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Abstract. Unmanned Aerial Vehicles (UAVs) require robust exploration strategies to operate effectively in 

unknown indoor environments. Traditional methods often rely on prior training data or environment-specific 

models, limiting their adaptability in novel scenarios. In this paper, we propose a Curiosity-Aware Zero-Shot 

Framework that integrates an Intrinsic Curiosity Module (ICM) with a domain-randomized Zero-Shot planner to 

enable efficient and autonomous UAV exploration without retraining. Our framework is trained in simulated 

environments with randomized layouts to promote generalization and evaluated in unseen 3D indoor scenes. 

Experimental results show that our method significantly outperforms baselines such as Random Walk, Greedy 

Frontier, ICM-only, and Zero-Shot-only planners, achieving 89.7% coverage, 1.6 path efficiency, 328 seconds 

exploration time, and a 94.5% success rate. The ablation study highlights the complementary role of both ICM and 

Zero- Shot components. This work presents a scalable solution for real-time UAV navigation and contributes to 

the development of intelligent aerial systems capable of learning to explore novel environments autonomously. 

Keywords: deep reinforcement learning; aeronavigation; zero-shot learning; intrinsic curiosity module; 

autonomous exploration

INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) have 

become critical assets in various applications such 

as search and rescue, environmental monitoring, 

and infrastructure inspection due to their mobility 

and aerial perspective. One of the fundamental 

challenges in autonomous UAV deployment is 

efficient exploration of unknown environments. 

Traditional UAV exploration approaches rely 

heavily on prior training data or environment- 

specific models, which limits their adaptability in 

novel or unseen scenarios. 

Inspired by the way humans and animals 

explore unfamiliar spaces using intrinsic 

motivation and learned experiences, recent 

research has focused on integrating curiosity-

driven learning and Zero-Shot generalization into 

robotic systems. Curiosity modules, such as the 

Intrinsic Curiosity Module (ICM), enable agents 

to self-motivate exploration even in the absence of 

external rewards, while Zero-Shot learning aims 

to allow agents to generalize their skills to new 

environments without additional retraining. 

Combining these two paradigms offers a 

promising direction to build truly autonomous, 

efficient, and generalizable UAV exploration 

systems. 

 

Despite advances in deep reinforcement 

learning and visual navigation, most existing 

UAV exploration systems struggle to adapt to 

unseen environments without fine-tuning or 

retraining. Furthermore, current Zero-Shot 

navigation approaches often neglect the benefits 

of curiosity-based intrinsic motivation, resulting 

in inefficient or non-purposeful exploration in un- 

familiar domains. 

This research aims to design a curiosity-

aware Zero-Shot navigation framework that 

enables UAVs to efficiently explore unfamiliar 

environments without requiring retraining. Our 

goal is to mimic a learning-to-explore paradigm 

where the UAV is equipped with intrinsic 

motivation and generalizable planning capabilities 

to autonomously navigate novel scenarios. 

To achieve this, we propose a two-stage 

approach. First, a curiosity-driven exploration 

policy is trained using the Intrinsic Curiosity 

Module (ICM) to learn meaningful navigation 

behavior in a source environment. Second, a Zero-

Shot planner is deployed that transfers the 

exploration knowledge to new target 

environments using domain randomization 

techniques. This approach allows UAVs to adapt 

to diverse scenes and structures without requiring 

access to task-specific data in the new 
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environment. 

The proposed system is trained in a simulated 

environment with varying layouts and object 

placements to build robust exploration 

capabilities. During inference, the UAV uses the 

pretrained curiosity module and planner to explore 

target environments, collecting and comparing 

trajectories in terms of coverage efficiency, path 

smoothness, and exploration time. The system is 

evaluated on multiple unseen 3D environments to 

demonstrate generalization and performance. 

The main contributions of this paper are as 

follows. We introduce a novel Curiosity-Aware 

Zero-Shot framework for UAV navigation in 

unseen environments, enabling autonomous and 

efficient exploration without retraining. This 

framework integrates an Intrinsic Curiosity 

Module (ICM) with a domain- randomized 

planner to promote intrinsic motivation and robust 

generalization across diverse environments. 

Furthermore, we present a comprehensive 

evaluation demonstrating its superior performance 

in exploration coverage, path efficiency, and 

adaptability when compared to baseline methods 

in multiple novel environments. In summary, this 

work introduces a practical and scalable solution 

for real-time autonomous UAV exploration in 

unseen environments, combining intrinsic 

curiosity with zero-shot generalization, and lays 

the foundation for future research in building 

intelligent aerial systems capable of learning to 

explore efficiently in the wild. 

Autonomous exploration using Unmanned 

Aerial Vehicles (UAVs) has emerged as a critical 

area of study within robotics, particularly for 

applications such as disaster response, 

environmental mapping, and infrastructure 

inspection in GPS- denied or previously unseen 

environments. These tasks require UAVs to 

operate with minimal human intervention while 

efficiently covering unknown areas, often in 

challenging or un- structured settings. Traditional 

exploration strategies typically depend on 

Simultaneous Localization and Mapping (SLAM) 

algorithms, frontier-based planning, or rule-based 

heuristics to guide the agent’s behavior. Although 

these methods have demonstrated success in 

controlled or structured environments, their 

performance tends to degrade when deployed in 

highly dynamic, cluttered, or irregular spaces due 

to rigid assumptions, sensitivity to sensor noise, 

and reliance on handcrafted logic. Complementing 

these, curiosity-driven reinforcement learning 

(RL) leverages intrinsic motivation internal 

signals that encourage agents to seek novel or 

uncertain states. This addresses the challenge of 

sparse or unavailable external re- wards, enabling 

agents to learn exploration behaviors without 

external supervision. Despite their effectiveness in 

learning exploration, intrinsic motivation 

approaches often suffer from limited 

generalization across different environments, 

making them less suitable for direct deployment in 

novel settings. 

Zero-Shot Learning (ZSL) aims to enable 

intelligent agents to generalize learned knowledge 

and behaviors to novel environments without 

requiring further retraining. This paradigm is 

especially valuable in UAV navigation tasks, 

where deploying a model in new, unseen scenarios 

is often costly or impractical due to the need for 

data collection, fine-tuning, or task-specific 

adaptation. In the context of autonomous 

exploration, Zero- Shot Transfer allows a UAV 

trained in a set of source domains, typically 

simulated environments to directly operate in new 

target domains, such as real-world environments 

with different layouts, textures, lighting 

conditions, or sensor noise. To achieve this, many 

recent approaches employ techniques such as 

domain randomization, which exposes the agent to 

a wide variety of variations during training to 

encourage robustness; or meta-learning, which 

focuses on training agents that can quickly adapt 

to new tasks with minimal data. These methods 

attempt to close the sim-to-real gap by promoting 

the learning of abstract skills that are transferable 

across environments, crucial for robustness 

against unexpected dynamics or sensory 

observations. 

Curiosity-driven learning has emerged as a 

compelling approach for enabling self-supervised 

exploration in autonomous agents. Unlike 

traditional reinforcement learning that depends on 

external rewards, curiosity-based methods rely on 

intrinsic motivation to drive behavior through 

mechanisms like the Intrinsic Curiosity Module 

(ICM) or Random Network Distillation (RND), 

which generate internal reward signals based on 

novelty or prediction error. When integrated with 

Zero- Shot Transfer learning, curiosity-driven 

exploration offers a powerful synergistic effect. 

While Zero-Shot techniques pro- vide the capacity 

for generalization across domains, curiosity 

modules act as adaptive engines that guide 

exploration in novel environments, even when the 

agent has no prior task-specific knowledge. The 

agent is actively drawn toward informative and 

previously unvisited areas, improving state 



Tamba, T. | Internasional Conference on Science, Education and Technology (2025): 171-181 

173 

 

coverage and operational effectiveness. This 

combination offers a scalable solution for real-

world deployment, especially in dynamic or 

unpredictable environments, by learning curiosity 

policies in randomized simulated domains and 

transferring them directly to new target 

environments without retraining. Such integration 

bridges the gap between robust generalization and 

purposeful behavior, enabling UAVs to operate 

autonomously, adaptively, and efficiently across a 

wide range of missions and terrains. 

Policies for autonomous agents, particularly 

UAVs, are frequently trained in simulation due to 

safety and cost constraints. However, their 

ultimate utility lies in successful deployment in 

real-world scenarios.  

However, their ultimate utility lies in 

successful deployment in real-world scenarios.  

This transition from simulation to reality, 

known as Sim2Real transfer, presents significant 

challenges. The primary hurdle is the reality gap, 

stemming from discrepancies between simulated 

and real-world physics, sensor noise 

characteristics, unexpected latencies, and 

unmodeled dynamics. These differences can lead 

to policies overfitting simulation specifics, 

causing poor performance in actual deployments. 

To effectively bridge this gap, various 

techniques are employed during the training 

phase. Domain Randomization (DR) is a 

prominent method, where physical and visual 

parameters of the simulation environment are 

varied extensively during training. The hypothesis 

is that by exposing the agent to a wide spectrum of 

variations, it learns a robust policy that is invariant 

to these randomized parameters, thereby 

generalizing well to unseen real-world conditions. 

Other approaches include domain adaptation 

techniques, which aim to align features between 

simulation and reality, and meta-learning, which 

enables rapid adaptation to new environments 

with minimal data. 

METHOD 

The proposed system introduces a Curiosity-

Aware Zero- Shot Navigation Framework for 

Unmanned Aerial Vehicles (UAVs), designed to 

autonomously explore novel 3D environments 

without requiring environment-specific retraining. 

The architecture consists of two main phases, 

training phase, which incorporates modules to 

model intrinsic curiosity and generalize 

navigation policies, and a Deployment Phase, 

where the learned policies are applied to unseen 

environments. This modular design enables robust 

generalization and efficient exploration in 

unfamiliar settings. 

The initial stage of the system involves 

constructing di- verse and randomized training 

environments using domain randomization 

techniques. These environments are varied in 

terms of layout, textures, lighting conditions, and 

structural configurations to prevent the agent from 

overfitting to specific environmental features. The 

primary goal is to expose the UAV to a wide range 

of scenarios during training so that it learns robust 

and generalizable exploration strategies. By 

simulating such variability, the agent develops the 

capacity to perform well in unseen environments, 

facilitating effective zero-shot transfer. As the 

UAV interacts with its environment, it perceives 

its surroundings through onboard sensors such as 

RGB-D cameras, IMUs, or LiDAR. The raw 

sensor data is then processed into compact and 

informative state representations using a 

convolutional neural network (CNN) or other 

suitable encoders. These state vectors encapsulate 

spatial and semantic features of the environment 

and serve as inputs to both the intrinsic motivation 

module and the exploration policy. Accurate and 

abstract state representations are critical for 

efficient decision-making in high-dimensional, 

partially observable environments. 

 

 
Figure 1. System architecture of the proposed Curiosity-Aware Zero-Shot Navigation 

Framework for UAVs 
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A central component in achieving curiosity-

aware and zero-shot UAV exploration is the 

ability to transform raw, t, the UAV receives a 

stream of raw observations ot from onboard 

sensors, including RGB-D images, IMU readings, 

and LiDAR point clouds. To cope with the high-

dimensional, partially observable nature of indoor 

environments, we design an encoder network fenc 

that fuses these inputs into a latent state vector st: 

 

st = fenc(ot) = fCNN (It) ⊕  fMLP (Zt) ⊕ fProj (pt)    (1)  

 

where It is the RGB-D image, zt represents inertial 

signals, and pt encodes spatial structures derived 

from LiDAR. The fusion operator ⊕ combines 

semantic, dynamic, and geometric cues into a 

unified representation space. This encoding 

ensures that the internal state is compact yet 

expressive, invariant to visual appearances, and 

robust to domain shifts introduced via 

randomization. 

 

 
Figure. 2. Multimodal State Extraction Pipeline. 

 
The encoded state st plays a pivotal role in both 

the learning and deployment stages of our UAV 
exploration framework. It is primarily utilized by 
the intrinsic curiosity module (ICM) to compute 
prediction-based novelty rewards. This 
encourages the UAV to actively seek unfamiliar 
states within the environment. The intrinsic 
reward rint is calculated as the squared Euclidean 
distance between the predicted feature vector 
ϕˆ(st+1) and the actual feature vector ϕ(st+1) of 
the subsequent state: 

 

rint (st,at) = || ϕ̂ (𝑆𝑡 + 1) − ϕ (𝑆𝑡 + 1) ||2          (2) 
 

Beyond guiding curiosity, the encoded state 

is also consumed by the exploration policy, which 

determines actions via a stochastic policy. This 

policy, at ∼ π(at|st), is optimized by blending 

both extrinsic rewards rext from the environment 

and intrinsic rewards rint from the ICM, as shown 

in the objective function: 

𝐽 (𝜋) =  𝐸𝜋  [∑ 𝛾𝑡𝑇
𝑡=0  (𝑟𝑒𝑥𝑡 (𝑠𝑡 , 𝑎𝑡) +  𝜂 𝑟𝑖𝑛𝑡(𝑠𝑡, 𝑎𝑡)) (3) 

 
The quality and abstraction level of the 

encoded state st are paramount to the system’s 
success in achieving zero- shot exploration 
capabilities within diverse environments. This 
meticulously designed representation offers 
several key benefits. In environments with sparse 
or nonexistent external rewards, our framework 
incorporates an Intrinsic Curiosity Module (ICM), 
a self-supervised mechanism that drives the UAV 
to explore by measuring its uncertainty in state 
transitions. The ICM consists of a forward model 
and an inverse model, both operating in the latent 
state space st. The forward model predicts the next 
latent state 𝑠𝑡̂ + 1 from st and action at, and its 
prediction error serves directly as the intrinsic 
reward, rint: 

 

𝑟𝑖𝑛𝑡 (𝑠𝑡 , 𝑎𝑡) = ||𝑓𝑓𝑤𝑑(𝑠𝑡 , 𝑎𝑡) − 𝑠𝑡 + 1||2         (4) 

 

Our framework emphasizes zero-shot policy 

transfer. The exploration policy is trained 

exclusively in diverse simulated environments, 

utilizing extensive domain randomization. This 

process enables direct transfer to novel real or 

simulated environments without any additional 

training or fine-tuning, leveraging generalized 

exploration behaviors. The success of this 

approach hinges on the diversity of training 

environments, ensuring the policy is invariant to 

specific configurations and learns robust 

heuristics for exploration. During inference, the 

UAV deploys this pretrained policy, relying solely 

on learned behaviors and the intrinsic reward 

signal from the ICM. Actions are selected based 

on the current state and estimated novelty, 

encouraging autonomous targeting of uncertain 

regions. The proposed framework's performance 

is rigorously evaluated and benchmarked using 

metrics like Coverage Rate, Exploration Time, 

and Policy Robustness across diverse, previously 

unseen indoor environments. Comparative results 

against SLAM-based frontier exploration and 

standard RL without intrinsic motivation clearly 

demonstrate significant improvements in both 

exploration efficiency and robustness. The UAV 

consistently covers a larger fraction of the 

environment in less time and exhibits stable 

performance across different environments, 

validating the generalizability of the learned 

policy. 
Conversely, the inverse model predicts the 

action 𝑎𝑡̂ taken between two successive states, 
stabilizing the learned state representation. Its loss 
is Linv = CrossEntropy(𝑎𝑡̂, at). The total ICM loss 
is a combination of these forward and inverse 
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losses, balanced by β ∈ [0, 1]:  

 

LICM = βLfwd + (1 – β) Linv                         (5) 

 

 

This mechanism is crucial for zero-shot 

exploration, enabling the agent to learn 

generalized exploration strategies in diverse 

simulated environments and effectively transfer 

policies to unseen test environments. 

To effectively leverage the intrinsic rewards 

generated by the Intrinsic Curiosity Module 

(ICM), we adopt a deep reinforcement learning 

(DRL) framework, specifically the Proximal 

Policy Optimization (PPO) algorithm, to train an 

exploration policy ne. This policy acts as the brain 

of the UAV, mapping encoded state 

representations st into a distribution over actions 

at, guiding the UAV to maximize its long-term 

cumulative rewards driven by curiosity. At each 

timestep t, the agent observes the current state st 

selects an action at from its policy πθ(at|st) and 

executes it in the environment. This I action results 

in a transition to a new state st+1 and the 

reception of an intrinsic reward 𝑟𝑡
𝑖𝑛𝑡  from the 

ICM, which quantifies the novelty or surprise of 

the new state. 

The PPO algorithm is chosen for its stability 

and performance in policy optimization. It aims to 

maximize an objective function while keeping the 

new policy close to the old policy, preventing 

overly large policy updates that can lead to 

instability. The core of PPO's policy update 

mechanism involves minimizing a clipped 

surrogate loss function, which can be expressed 

as: 

 
LCLIP (𝜃) = 𝐸𝑡̂ = [min(𝑟𝑡 (𝜃) 𝐴𝑡̂ , 𝑐𝑙𝑖𝑝 (𝑟𝑡(𝜃), 1− ∈, 1+ ∈) 𝐴𝑡̂]      (6) 

 

Here, θ represents the parameters of the policy 

network πθ, and Eˆt denotes the empirical 

expectation over a batch of samples collected at 

time t. The term: 

 

𝑟𝑡(𝜃) =  
𝜋𝜃(𝑎𝑡 | 𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡 | 𝑠𝑡)
             (7) 

 

the ratio of the probability of action at under the 

current policy πθ to the probability under the old 

policy πθold , ensuring that updates are proportional 

to the change in policy. Furthermore, 𝐴𝑡̂ is the 

advantage estimate at timestep t, which measures 

how much better or worse action at was compared 

to the average action from state st. A common and 

robust form for advantage is the Generalized 

Advantage Estimation (GAE): 

 

𝐴𝑡̂ 𝐺𝐴𝐸(𝛾,𝜆) =  ∑ (𝛾𝜆)1∞
𝑙=0  𝛿𝑡 + 1           (8) 

 

where δt = rt + γV (st+1) − V (st) signifies 

the temporal difference (TD) error, V (st) is the 

estimated value function, γ is the discount factor, 

and λ is the GAE parameter. The term clip(rt(θ), 

1−ϵ, 1+ϵ) is used to clip the probability ratio rt(θ) 

within a small interval, typically [1−ϵ, 1+ϵ] with 

ϵ = 0.2. This crucial clipping mechanism prevents 

aggressive policy updates that could destabilize 

training. Finally, the objective takes the minimum 

of the unclipped and clipped terms, a strategy that 

ensures the policy update does not lead to a 

significant change if the advantage is positive 

(indicating a good action) and penalizes large 

drops in probability for such beneficial actions.  

This process, achieved through repeated 

interaction with randomized training 

environments, gradually refines the UAV’s 

behavior to prioritize novel state visitation, avoid 

redundancy, and improve overall exploration 

coverage. The resulting policy learns to prioritize 

transitions to unexplored areas and avoid 

revisiting low-information states, enabling 

 

 

Table 1.Components and Functions of The Intrinsic Curiosity Module (ICM) 

ICM Component Function / Role Loss / Output 

Forward Model (ffwd) Predicts next latent state’sˆt+1 

from current state st and action at. 

 rint = ϕˆ(st+1) − ϕ(st+1) 2 

t 2 

Inverse Model (finv) Predicts action aˆt taken between 

two consecutive latent 

states st and st+1. 

 Linv = CrossEntropy(aˆt, at) 

Total ICM Loss (LICM) Combines forward and inverse 

losses to train state encoder and 

drive intrinsic exploration. 

 βLfwd + (1 − β)Linv 
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efficient operation in novel environments without 

external guidance. 

Domain Randomization (DR) is a crucial 

technique utilized in the first stage of the system 

to generate a wide variety of training scenarios for 

the UAV agent. The primary aim of DR is to 

bridge the ”reality gap” the discrepancy between 

simulated training environments and real-world 

conditions. By exposing the learning agent to 

diverse synthetic environments during simulation, 

we hypothesize that the variability in training will 

lead to robust policy generalization, enabling 

effective transferability to unseen real-world 

environments. This is particularly important 

because conventional DRL models often tend to 

overfit specific spatial arrangements, visual 

patterns, textures, lighting conditions, or object 

configurations present in their limited training 

data. 

RESULTS AND DISCUSSION 

Experimental Setup and Resources 

For training, 50 distinct randomized layouts 

are used, varying in size (10m × 10m to 20m × 

20m), obstacle density (10–50 objects), and 

structural complexity (walls, hallways, rooms). 

Generalization capabilities are tested on 10 

entirely unseen scenes, structurally different from 

the training set, to simulate true zero-shot 

conditions. The autonomous agent is a quadrotor 

UAV, based on the hector quadrotor platform, 

ensuring realistic flight dynamics. It is equipped 

with an RGB-D camera (depth data rendered via 

depth sim), an Inertial Measurement Unit (IMU), 

and odometry sensors for environmental 

perception. All experiments are conducted on a 

high-performance workstation featuring an Intel 

i9 CPU, 64GB RAM, and an NVIDIA RTX 3090 

GPU, providing ample computational power for 

complex simulations and deep reinforcement 

learning. It significantly reduces sample 

complexity by compressing high-dimensional raw 

observations from the surrounding 3D 

environment into a concise set of task-relevant 

features. This compression directly contributes to 

a substantially more data- efficient learning 

process, allowing the agent to acquire robust 

policies with less environmental interaction. 

Furthermore, this design actively facilitates 

generalization, as the training environments are 

strategically constructed with domain 

randomization. Such variability shapes st to be 

inherently invariant to superficial changes, 

thereby enabling the UAV to perform effectively 

in novel, unseen environments beyond its training 

distribution. Lastly, this robust state 

representation greatly improves the system’s 

stability and performance in partially observable 

or dynamically changing indoor settings, where st 
consistently retains stable and interpretable 

contextual information crucial for effective 

decision-making and continuous autonomous 

exploration. 

 

 
Figure 3. Validation Setup Environment 

 

Evaluation and Results 

The framework’s performance is rigorously 

evaluated using quantitative metrics. Exploration 

Coverage represents the per- centage of the 

environment explored within a fixed number of 

steps, while Path Efficiency is defined as the ratio 

of total path length to area explored. Exploration 

Time measures the duration to reach 80% 

coverage, and Success Rate indicates the 

percentage of runs where the UAV successfully 

explores ≥90% of the environment within the 

time limit. We com- pare our method against four 

baseline exploration strategies. 

These include a simple Random Walk, a 

classical Greedy Frontier method which explores 

the closest unexplored areas, a Curiosity-only 

approach guided solely by intrinsic motivation 

without planning, and a Zero-Shot-only policy 

trained with domain randomization but lacking 

intrinsic curiosity. Our proposed framework 

consistently outperforms these baseline methods 

across all evaluation metrics, demonstrating 

strong generalization to unseen layouts. 

Quantitative results across 10 unseen test 

environments are summarized in Table IV. For 

instance, our method achieves significantly higher 

Coverage and Success Rates while maintaining 

superior Path Efficiency and requiring less 

exploration time compared to all baselines.  
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While our framework shows promising 

performance in simulation, several limitations 

remain. The experiments are conducted in a fully 

simulated environment, implying that real-world 

deployment may face additional challenges such 

as sensor noise or complex dynamic obstacles not 

fully captured in simulation. Furthermore, the 

current method assumes a static environment; 

extending its capabilities to dynamic 

environments remains an area for future work. 

Lastly, our focus has solely been on coverage 

tasks, meaning adaptation to other exploration 

goals, such as specific object findings or detailed 

mapping, has not yet been addressed. 

 

 
 

Figure 4. Comparative analysis of UAV 

exploration performance across various metrics on 

10 unseen scenes. The figure presents: (a) 

Exploration Coverage, (b) Exploration Efficiency, 

(c) Exploration Time, and (d) Success Rate for 

different exploration methodologies 

Figure 4 presents a comprehensive visual 

comparison of the exploration methodologies by 

normalizing their performance across diverse 

metrics. This normalization is crucial as it scales 

disparate metrics, such as exploration coverage (in 

percentage), efficiency (dimensionless), and time 

(in seconds), onto a uniform scale ranging from 0 

to 1. On this scale, a value of 1 consistently 

represents the optimal performance achieved 

across the evaluated methods for a given metric, 

while 0 denotes the least effective outcome. This 

approach facilitates a direct and intuitive appraisal 

of each method’s relative strengths and 

weaknesses across multiple dimensions of 

performance, abstracting away their original units. 

As visually evidenced in Figure 4, our 

proposed method (ICM + ZSPP) consistently 

exhibits a superior performance profile across all 

normalized metrics. Notably, it achieves the 

highest normalized scores for exploration 

coverage and demonstrates a remarkably robust 

performance in both exploration efficiency and 

exploration time, consistently approaching the 

normalized optimal value of 1. This compelling 

visual evidence strongly corroborates our 

quantitative findings, illustrating that the 

integrated benefits of the Intrinsic Curiosity 

Module and Zero-Shot Policy Transfer enable the 

UAV to maintain a high level of exploratory 

effectiveness while significantly minimizing both 

the temporal and energetic costs associated with 

achieving target coverage. 

Table 3 showed in contrast, traditional 

methods such as Random Walk and Frontier-

 

Table 3. Comparison of Exploration Strategies 

Method 
Coverage  

(%) (↑) 

Path Efficiency 

(↓) 

Time (s) 

 (↓) 

Success 

Rate (%) (↑) 

Random Walk 52.3 3.1 520 58.0 

Frontier-based 74.6 2.2 410 81.2 

Curiosity-only 68.2 2.5 460 73.0 

Zero-Shot-only 75.1 2.2 398 83.5 

Ours (ICM + ZSPP) 89.7 1.6 328 94.5 

 

 

 

 

 

 

 

Table 2. Quantitative Results Across 10 Unseen Scenes 

Method Coverage (%) Efficiency (↓) Time (s) (↓) Success (%) 

Random Walk 52.3 3.1 520 58.0 

Frontier-based 74.6 2.2 410 81.2 

Curiosity-only 68.2 2.5 460 73.0 

Zero-Shot-only 75.1 2.2 398 83.5 

Ours (ICM + ZSPP) 89.7 1.6 328 94.5 
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based exploration generally occupy the lower end 

of the normalized performance spectrum, 

highlighting their inherent limitations in 

navigating and mapping complex, previously 

unseen environments. The ablative baselines 

(Curiosity-only and Zero-Shot-only) demonstrate 

intermediate performance, underscoring the 

critical synergistic importance of combining both 

intrinsic motivation and robust generalization 

strategies for achieving truly superior autonomous 

exploration capabilities. This holistic 

improvement across all key performance 

indicators, visually reinforced by the normalized 

performance graph, validates the robustness and 

practical applicability of our framework in 

challenging indoor exploration scenarios. 

These findings clearly demonstrate that 

combining curiosity-driven exploration with zero-

shot transfer yields significant improvements in 

both exploration efficiency and robustness. The 

UAV not only covers a larger fraction of the 

environment in less time but also shows consistent 

performance across different environments, 

validating the generalizability of the learned 

policy. Together, these results underscore the 

advantage of intrinsic motivation mechanisms in 

enabling autonomous UAV navigation and 

exploration in unknown indoor settings, paving 

the way for scalable and adaptable robotic 

systems. 

Ablation Study 

To precisely ascertain the individual 

contributions of the Intrinsic Curiosity Module 

(ICM) and the Zero-Shot Pol- icy Transfer (ZSPT) 

mechanism within our comprehensive proposed 

framework, a dedicated study was meticulously 

designed and executed. This experimental 

investigation systematically evaluates UAV 

performance across various configurations; 

wherein specific components of our full 

framework are either judiciously removed or 

isolated. 

As observed in Table V, the full framework 

(Ours) significantly outperforms both Curiosity-

only and Zero-Shot- only baselines across all 

metrics. The Curiosity-only method, despite its 

exploration drive, shows lower coverage and 

higher exploration time compared to the full 

model, indicating that without effective zero-shot 

generalization techniques, curiosity alone may 

lead to inefficient exploration in novel 

environments. Conversely, the Zero-Shot-only 

policy, while demonstrating better efficiency and 

time compared to Curiosity-only due to its robust 

generalization, still falls short in overall coverage 

and success rate. This suggests that without the 

continuous intrinsic motivation from ICM, the 

agent might not effectively explore highly 

uncertain or novel regions, potentially sticking to 

repetitive behaviors or well-understood areas. The 

synergistic combination of ICM and Zero-Shot 

capabilities is thus crucial for achieving superior 

and generalizable exploration performance in 

unseen indoor environments shown in Table 4. 

 

 
Figure 5. Quantitative Results Across 10 Unseen 

Scenes 

 

Regarding Coverage, which quantifies the 

percentage of the explorable environment 

successfully visited, our proposed ”Ours (ICM + 

ZSPP)” method achieved the highest at 89.7%. 

This performance significantly outperforms 

”Zero-Shot-only” at 75.1% and ”Frontier-based” 

at 74.6%, indicating a more complete exploration. 

For Efficiency, where lower values signify better 

performance, ”Ours (ICM + ZSPP)” demonstrated 

the highest efficiency with a score of 1.6. This 

shows more optimal navigation with less 

redundant movement compared to other methods, 

such as ”Frontier-based” and ”Zero-Shot- only” 

Table 4. Quantitative Results Across 10 Unseen Scenes 

Method Coverage (%) Efficiency (↓) Time (s) (↓) 

Random Walk 52.3 3.1 520 

Frontier-based 74.6 2.2 410 

Curiosity-only 68.2 2.5 460 

Zero-Shot-only 75.1 2.2 398 

Ours (ICM + ZSPP) 89.7 1.6 328 
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which both scored 2.2. Lastly, for Time, which 

measures the total exploration duration in seconds 

(lower values being better), our method, ”Ours 

(ICM + ZSPP)”, recorded the shortest time at 328 

seconds. This is a notable improvement over 

”Zero-Shot-only” at 398 seconds and ”Frontier-

based” at 410 seconds, confirming its rapid task 

completion. The quantitative results highlight that 

our proposed ”Ours (ICM + ZSPP)” framework 

consistently delivers superior performance across 

all key indicators, including Coverage, Efficiency, 

and Time, in challenging, unseen environments. 

This validates its efficacy for autonomous UAV 

navigation. 

The primary objective of this comparative 

analysis is to elucidate the synergistic benefits 

derived from the holistic integration of intrinsic 

motivation (via ICM) and enhanced generalization 

(via ZSPT capabilities). For this purpose, our 

complete framework (ICM + ZSPT) is rigorously 

benchmarked against two meticulously 

constructed ablated baselines. The first, 

designated the Curiosity-only baseline, 

exclusively leverages the Intrinsic Curiosity 

Module for intrinsic motivation, compelling the 

UAV through novelty-seeking behaviors shown 

Table 5. 

However, this configuration critically omits 

the explicit domain randomization strategies 

pivotal for facilitating zero- shot transfer, thereby 

potentially constraining the policy’s adaptability 

and effectiveness primarily to environments 

sharing characteristics with the training domains, 

as it has not been trained to generalize across 

varied superficial environmental traits. 

Conversely, the second, labeled the Zero-Shot-

only’ baseline, incorporates robust domain 

randomization techniques during training, 

specifically engineered to foster generalization 

across diverse environments. Yet, this setup 

notably foregoes the intrinsic reward mechanism 

of the ICM, consequently relying exclusively on 

extrinsic task rewards and the inherent diversity 

provided by the randomized training 

environments. Without the self-supervised 

impetus for novel state discovery, its exploration 

performance may be severely constrained in 

environments characterized by sparse or delayed 

external rewards, potentially leading to 

suboptimal and less comprehensive exploration 

outcomes. 

Figure 6. Normalized performance comparison 

across different exploration methods on unseen 

scenes. All metrics are scaled from 0 (worst) to 1 

(best) for relative comparison. The plot illustrates: 

normalized coverage (higher is better), normalized 

efficiency (lower time/distance is better), and 

normalized exploration time (lower is better) 

 

Figure 6 presents a comprehensive visual 

comparison of the exploration methodologies by 

normalizing their performance across diverse 

metrics. This normalization is crucial as it scales 

disparate metrics, such as exploration coverage (in 

percentage), efficiency (unitless), and time (in 

seconds), onto a uniform scale ranging from 0 to 

1. On this scale, a value of 1 consistently 

represents the best performance achieved across 

the evaluated methods for a given metric, while 0 

denotes the worst. This approach allows for a 

direct and intuitive appraisal of each method’s 

relative strengths and weaknesses across multiple 

dimensions of performance. 

As depicted in Figure 6, our proposed method 

(ICM + ZSPP) consistently exhibits a superior 

performance profile across all normalized metrics. 

Notably, it achieves the highest normalized scores 

for exploration coverage and shows a remarkably 

Table 5. Ablation Study Results Across 10 Unseen Scenes 

Method Coverage (%) Efficiency (↓) Time (s) (↓) Success (%) 

Random Walk 52.3 3.1 520 58.0 

Frontier-based 74.6 2.2 410 81.2 

Curiosity-only 68.2 2.5 460 73.0 

Zero-Shot-only 75.1 2.2 398 83.5 

Ours (ICM + ZSPP) 89.7 1.6 328 94.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tamba, T. | Internasional Conference on Science, Education and Technology (2025): 171-181 

180 

 

strong performance in both exploration efficiency 

and exploration time, consistently approaching the 

normalized optimal value of 1. This visual 

evidence strongly corroborates our quantitative 

findings, illustrating that the integrated benefits of 

the Intrinsic Curiosity Module and Zero-Shot 

Policy Transfer enable the UAV to maintain a high 

level of exploratory effectiveness while 

significantly minimizing both the time and 

distance required to achieve target coverage. 

Conversely, traditional methods such as Random 

Walk and Frontier-based exploration generally 

occupy the lower end of the normalized 

performance spectrum, highlighting their 

limitations in complex, unseen environments. The 

ablative baselines (Curiosity-only and Zero-Shot-

only) demonstrate intermediate performance, 

underscoring the synergistic importance of 

combining both intrinsic motivation and robust 

generalization strategies for achieving truly 

superior autonomous exploration capabilities. 

This holistic improvement across all key 

performance indicators validates the robustness 

and practical applicability of our framework in 

challenging indoor exploration scenarios. 

CONCLUSION 

In this study, we presented a Curiosity-Aware 

Zero-Shot Framework for UAV navigation in 

indoor environments, ad- dressing the 

fundamental challenge of efficient exploration in 

unseen scenarios. By integrating the Intrinsic 

Curiosity Module (ICM) with a domain-

randomized Zero-Shot planner, our approach 

enables UAVs to autonomously and effectively 

explore unfamiliar environments without 

additional retraining. Experimental results 

demonstrate that our framework significantly 

outperforms baseline methods, achieving the 

highest exploration coverage (89.7%), best path 

efficiency (1.6), shortest exploration time (328 

seconds), and highest success rate (94.5%) across 

multiple novel 3D environments. The ablation 

study further confirms the critical contribution of 

both ICM and Zero-Shot planning components, 

with performance degrading when either module 

is removed. Our findings show that combining 

intrinsic motivation with generalizable planning 

provides a powerful paradigm for scalable and 

robust UAV exploration. This work lays the 

groundwork for future advancements in intelligent 

aerial systems that can learn to explore efficiently 

in real-world, dynamically changing 

environments without prior knowledge. 
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