PENGUATAN KOMPETENSI PROFESIONAL GURU BIOLOGI DALAM IMPLEMENTASI PEMBELAJARAN *DEEP LEARNING* BERBASIS TIK MELALUI PELATIHAN TERPROGRAM

Sri Sukaesih^{1*}, Aditya Marianti¹, Sigit Saptono¹, Sriyadi¹, Litania Hephzibah Lemmuela¹, Siti Nur Fathimatuz Zahra¹, Hasnaa² Dhiya² Ulhaq¹, Aulia Tirani Pangastuti¹, Yusuf Wisnu Mandaya², Ririn Masrikhah³

¹Prodi Pendidikan Biologi, FMIPA, Universitas Negeri Semarang, Jl. Raya Sekaran, Gunungpati, Semarang 50229

²Prodi Tadris Matematika, UIN Sunan Kudus, Jawa Tengah, Indonesia ³SMA Negeri 4 Semarang, Jawa Tengah, Indonesia

*Email: sri sukaesih@mail.unnes.ac.id

Abstrak

Guru merupakan pendidik profesional yang perlu meningkatkan kompetensi profesional secara berkelanjutan. Guru profesional diharapkan mampu menciptakan pembelajaran yang mendalam dan bermakna bagi peserta didik. Pembelajaran mendalam (deep learning) menjadi pendekatan pembelajaran inovatif yang digulirkan oleh Kementerian Pendidikan Dasar dan Menengah Republik Indonesia. Hasil analisis permasalahan dan kebutuhan dengan Guru Biologi SMA Kota Semarang menunjukkan belum ada sosialisasi yang terprogram dari pemerintah terkait pembelajaran deep learning, guru belum memahami kerangka kerja dan penerapan deep learning dengan memanfaatkan teknologi informasi dan komunikasi (TIK) dan implementasinya dalam pembelajaran. Tujuan kegiatan ini untuk meningkatkan pemahaman dan keterampilan guru MGMP Biologi SMA dalam merancang pembelajaran deep learning berbasis TIK dan implementasinya di pembelajaran biologi untuk meningkatkan kompetensi profesional guru. Metode kegiatan melalui Pelatihan Terprogram dengan tahapan: analisis kebutuhan di MGMP Biologi SMA, merumuskan solusi, pelaksanaan kegiatan, monitoring, dan evaluasi hasil program. Kegiatan IHT diikuti 50 orang guru Biologi. Hasil program menunjukkan guru biologi memiliki pemahaman yang baik dan sangat baik terkait pembelajaran deep learning, serta 90% guru terampil merancang pembelajaran dengan pendekatan deep learning berbasis TIK. Hasil monitoring menunjukkan guru mampu mengimplementasikan pembelajaran deep learning dalam praktik pembelajaran di kelas. Berdasarkan evaluasi dan tanggapan guru, program yang dilaksanakan sangat bermanfaat, memberi dampak positif bagi kreativitas dan inovasi pembelajaran biologi di kelas yang lebih mendalam, serta mendorong peningkatan kompetensi profesional guru secara berkelanjutan.

Kata kunci: deep learning, guru biologi, kompetensi profesional, pelatihan terprogram.

Abstract

Teachers are professional educators who need to continuously improve their professional competencies. Professional teachers are expected to create deep and meaningful learning experiences for students. Deep learning is an innovative learning approach introduced by the Ministry of Primary and Secondary Education of the Republic of Indonesia. The results of problem and needs analysis conducted with high school biology teachers in Semarang City showed that there has been no structured socialization from the government regarding deep learning. Teachers have not yet understood the framework and application of deep learning utilizing information and communication technology (ICT) and its implementation in classroom learning. The purpose of this activity is to enhance the understanding and skills of high school biology teachers' working group (MGMP Biologi SMA) in designing ICT-based deep learning and implementing it in biology teaching to improve teachers' professional competence. The activity was carried out through a Structured Training Program with several stages: needs analysis within the MGMP Biologi SMA, formulating solutions, implementation of activities, monitoring, and program evaluation. The in-house training (IHT) was attended by 50 biology teachers. The results of the program showed that biology teachers had good to excellent understanding of deep learning, and 96% of them were skilled in designing ICT-based deep learning lessons. Monitoring results indicated that teachers were able to implement deep learning in classroom practice. Based on evaluations and teachers' feedback, the program was found to be highly beneficial, positively impacting creativity and innovation in biology learning, fostering deeper learning experiences in the classroom, and encouraging continuous improvement of teachers' professional competence.

Keywords: deep learning, biology teachers, professional competence, structured training.

PENDAHULUAN

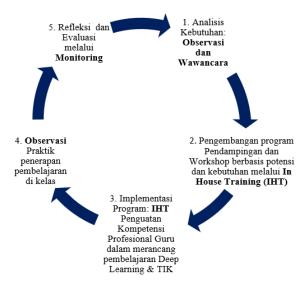
Di era Revolusi Industri 4.0 dan Society 5.0, terjadi kemajuan pesat dalam bidang teknologi informasi dan komunikasi (TIK) serta *Artificial Intellegence* (AI) yang telah membawa transformasi besar dalam dunia pendidikan. Salah satu pendekatan untuk menciptakan pembelajaran yang bermutu adalah inovasi pembelajaran *deep learning* (Kemendikdasmen, 2025). Pembelajaran *deep learning* mampu memfasilitasi pemahaman mendalam, berpikir kritis, dan kreativitas peserta didik. Penerapan *deep learning* menjadi sangat strategis karena mampu memfasilitasi proses pembelajaran biologi sesuai hakikatnya (Sugiharto, 2025).

Guru memegang peran penting dalam mengimplementasikan pembelajaran inovatif berbasis *deep learning* dengan dukungan TIK. Kompetensi profesional guru menjadi hal penting agar guru dapat merancang dan melaksanakan pembelajaran yang mampu menghasilkan peserta didik yang kritis, dan kreatif. Namun, fakta menunjukkan bahwa banyak guru biologi masih menghadapi tantangan dalam mengintegrasikan *deep learning* dengan TIK ke dalam praktik kelas, baik karena keterbatasan pengetahuan tentang metode tersebut, kurangnya keterampilan teknis, kendala sarana/prasarana, maupun minimnya dukungan profesional yang dilaksanakan secara terprogram.

Berbagai penelitian dan laporan yang relevan menunjukkan kesenjangan antara potensi TIK dan metode deep learning dengan kondisi aktual di lapangan. Misalnya, literasi digital guru yang belum merata, kurangnya pelatihan yang sistematis dan keberkelanjutan. Hasil wawancara dengan guru Biologi MGMP di Kota Semarang menunjukkan, guru-guru belum memahami konsep, prinsip dan penerapan deep learning sebagai sebuah pendekatan atau strategi pembelajaran. Ada 83,5% guru memiliki persepsi yang berbeda-beda tentang deep learning. Hal ini terjadi karena belum banyak informasi yang diterima, dan belum ada sosialisasi yang terprogram. Ketua MGMP Kota Semarang menyatakan bahwa guru-guru masih belum memiliki pemahaman yang jelas atau masih "meraba" apa dan bagaimana deep learning ini diimplementasikan dalam pembelajaran agar mampu memfasilitasi belajar siswa yang berbeda-beda karakteristiknya.

Perkembangan teknologi informasi dan komunikasi (TIK) dalam pembelajaran dapat menjadi media dan sumber belajar yang membantu guru menyampaikan materi secara efektif (Zuhri et al., 2024). TIK dapat digunakan agar pembelajaran lebih berkualitas dan tercipta pembelajaran yang lebih mendalam (*deep learning*). Namun, fakta menunjukkan masih ada 47,8% guru biologi yang masih jarang menggunakan TIK dalam pembelajaran.

Berdasarkan analisis situasi, MGMP Guru Biologi memiliki potensi untuk diberdayakan yaitu sebagai sarana pembinaan kompetensi guru secara berkelanjutan. Guru Biologi yang tergabung dalam komunitas MGMP memerlukan penguatan tentang *deep learning*, serta pemanfaatan teknologi informasi komunikasi yang dapat digunakan untuk memperdalam pemahaman konsep dan keterampilan proses siswa. Guru Biologi membutuhkan pendampingan untuk merancang pembelajaran dengan pendekatan *deep learning* dalam konteks pembelajaran aktif dan interaktif. MGMP Biologi memerlukan akses pada sumber daya atau materi pembelajaran yang dapat mengintegrasikan *deep learning* pada topik-topik Biologi.


Deep learning dapat menjadi strategi dan teknik untuk meningkatkan kualitas proses pembelajaran sains (Chen & Techawitthayachinda, 2021). Namun untuk mengimplementasikan deep learning dengan efektif, MGMP Guru Biologi membutuhkan sharing dan pendampingan untuk membuat rancangan pembelajaran Biologi yang efektif dengan pendekatan deep learning berbasis TIK. Berdasarkan permasalahan mitra tersebut maka perlu penguatan dan pendampingan bagi Guru Biologi dalam forum MGMP Biologi SMA tentang pendekatan deep learning dan integrasi TIK. Sharing dan penguatan perlu dilakukan agar guru dapat merancang pembelajaran dengan memperhatikan kesesuaian antara tujuan, asesmen dan proses pembelajarannya sesuai pembelajaran paradigma baru Kurikulum Merdeka (Fauzi, 2022). Perlu sinergi dan kolaborasi bersama antara lembaga perguruan tinggi dengan sekolah untuk bersama-sama saling sharing dan menguatkan tentang inovasi pembelajaran deep learning. Tujuan kegiatan ini untuk meningkatkan pemahaman dan keterampilan guru dalam merancang pembelajaran deep learning berbasis TIK, serta meningkatkan kompetensi profesional guru dalam implementasi pendekatan deep learning dalam pembelajaran biologi.

METODOLOGI

Metode pemecahan masalah yang digunakan melalui pendampingan dan workshop yang terprogram dalam format *In House Training* bagi guru Biologi Kota Semarang yang tergabung dalam forum MGMP Biologi Kota Semarang. Pendampingan dan IHT bertujuan untuk memberikan pemahaman dan keterampilan bagi guru dalam merancang pembelajaran dengan pendekatan *Deep Learning* berbasis TIK. Kegiatan pendampingan dan IHT dilaksanakan dengan tahapan analisis masalah/kebutuhan, pengembangan program, implementasi program, observasi dan praktik, refleksi dan evaluasi.

Pada tahap analisis kebutuhan, tim pengabdian melaksanakan observasi dan wawancara dengan guru dan Ketua MGMP Biologi Kota Semarang, yaitu mengidentifikasi permasalahan dan menganalisis kebutuhan mitra (Guru Biologi Kota Semarang). Pada tahap pengembangan program, tim pengabdian bersama mitra merumuskan solusi, yaitu merancang metode pendampingan dan *In House Training* (IHT) dan menyiapkan pendukung berbasis TIK, menyusun instrumen dan menyiapkan Ipteks. Pada tahap implementasi program,

dilaksanakan pendampingan dan IHT "Pemberdayaan Guru MGMP Biologi Kota Semarang dalam Merancang Pembelajaran *Deep Learning* Berbasis TIK" untuk Meningkatkan Kompetensi Profesional Guru. Pendampingan dilakukan dengan memberi kesempatan guru melakukan sharing dan konsultasi kepada Dosen Pendamping masing-masing dalam rentang waktu Guru menyelesaikan rancangan pembelajarannya. Kompetensi profesional guru harus terus dikembangkan secara berkelanjutan melalui pendidikan dan juga pelatihan (Biora et al., 2021; Lafendry, 2020). Tahapan kegiatan pendampingan dan IHT pemberdayaan guru MGMP Biologi SMA disajikan pada Gambar 1.

Gambar 1. Tahapan Pelatihan Terprogram

Pada tahap observasi dan praktik, guru melaksanakan praktik untuk mengimplementasikan rancangan pembelajaran yang sudah dikembangkan, yaitu pembelajaran dengan pendekatan deep learning berbasis TIK. Pembelajaran aktif, interaktif, dan bermakna dapat dirancang dengan memadukan beberapa tema, mengolaborasikan berbagai strategi pembelajaran, seperti pembelajaran berbasis STEAM, Project Based Learning, Problem based Learning atau melalui belajar penemuan (Discovery Learning) (Mahasneh & Alwan, 2018; Yamin et al., 2020). Penggunaan berbagai model pembelajaran diharapkan mampu meningkatkan kualitas proses pembelajaran secara nyata. Pada tahap akhir kegiatan dilaksanakan monitoring. Pada kegiatan monitoring, dilaksanakan refleksi dan evaluasi bersama guru terkait pelaksanaan dan hasil program yang telah dilaksanakan. Kegiatan IHT diharapkan menjadi sarana strategis bagi guru untuk meningkatkan kompetensi profesional secara berkelanjutan. Kompetensi profesional berkelanjutan akan dicapai diantaranya melalui kegiatan pendidikan, pelatihan, workshop, IHT, diantaranya melalui sharing bersama komunitas MGMP Biologi, yang hasilnya dievaluasi dan direfleksikan bersama. Hal ini mendukung Program Pengembangan Keprofesian Berkelanjutan (PKB) yang telah diprogramkan oleh pemerintah (Kementerian Pendidikan Dan Kebudayaan, 2016).

HASIL DAN PEMBAHASAN

Metode pelaksanaan program telah disusun secara sistematis. Berikut disajikan Struktur program pelatihan pada Tabel 1.

Table 1. Struktur Program Pelatihan				
No	Materi Kegiatan	Alokasi Waktu (JP)		
1	Pembelajaran Deep Learning: Strategi Menuju Pendidikan Bermutu	2		
2	Pembelajaran Mendalam: Tinjauan dari Sisi Neurosains Pendidikan	2		
3	Alternatif Rancangan Pembelajaran Biologi berpendekatan	2		
	Deep Learning			
4	AI TOOLS Kecerdasan Buatan untuk Menciptakan Era Aktivitas	2		
	Pembelajaran Baru			
5	Praktek Merancang Pembelajaran Biologi dengan Pendekatan Deep	12		
	Learning Berbasis TIK			
6	Implementasi Pembelajaran Deep Learning di Kelas secara	12		
	Berkelanjutan			
	Total waktu	32 jp		

Program pelatihan ini dirancang untuk memperkuat kompetensi profesional guru biologi dalam mengimplementasikan pembelajaran *deep learning* berbasis Teknologi Informasi dan Komunikasi (TIK). Waktu pelaksanaan program pelatihan selama 32 jam pelajaran, terdiri atas enam sesi utama yang berfokus pada peningkatan pengetahuan konseptual, pedagogis, dan keterampilan praktis guru.

Pada sesi pertama, materi pengantar agar guru memahami konsep dasar *deep learning* dalam konteks pendidikan biologi. Guru diperkenalkan pada paradigma baru pembelajaran yang menekankan pada pemahaman mendalam, berpikir kritis, dan penerapan konsep pada situasi nyata. Materi ini membantu guru memetakan strategi pembelajaran yang dapat meningkatkan mutu proses dan hasil belajar peserta didik (Estrada-Molina et al., 2024). Pembelajaran mendalam merupakan pembelajaran yang memuliakan dengan menekankan pada penciptaan suasana belajar dan proses pembelajaran berkesadaran, bermakna, dan menggembirakan melalui olah pikir, olah hati, olah rasa, dan olah raga secara holistik dan terpadu. Kerangka kerja Deep Learning terdiri atas empat komponen, yaitu (1) dimensi profil lulusan, (2) prinsip pembelajaran, (3) pengalaman belajar, dan (4) kerangka pembelajaran (Kemendikdasmen, 2025). Sharing dan diskusi interaktif guru dan narasumber dilakukan diantara penyampaian materi, berikut disajikan pada Gambar 2.

Gambar 2. Sharing dan diskusi bersama dengan guru biologi

Pada sesi ke-2, disampaikan materi terkait pembelajaran mendalam ditinjau dari sisi neurosains pendidikan. Materi ini memperkaya wawasan guru tentang landasan ilmiah deep learning dari perspektif neurosains pendidikan. Guru diajak memahami bagaimana otak memproses informasi, membangun memori jangka panjang, dan mengembangkan kemampuan berpikir tingkat tinggi. Pemahaman ini penting agar guru dapat merancang pembelajaran yang sejalan dengan cara kerja otak dan karakteristik peserta didik.

Guru dibimbing untuk mengidentifikasi berbagai alternatif rancangan pembelajaran biologi yang sesuai dengan prinsip *deep learning*. Diskusi difokuskan pada integrasi keterampilan berpikir kritis, pemecahan masalah, dan kolaborasi dalam konteks konsep-konsep biologi. Sharing ini memperkuat kemampuan pedagogik guru dalam mengembangkan model dan strategi pembelajaran inovatif. Pelatihan ini juga memperkenalkan berbagai alat kecerdasan buatan (AI tools) yang dapat dimanfaatkan untuk meningkatkan efektivitas pembelajaran biologi. Guru dilatih menggunakan aplikasi berbasis AI, seperti *ChatGPT*, *Canva AI*, *Google Bard*, atau *Quizizz AI*, untuk mendesain media interaktif, asesmen otomatis, dan simulasi biologi. Materi ini mendorong guru beradaptasi dengan transformasi digital pendidikan abad ke-21 (Fuadah et al., 2023).

Pada tahap berikutnya, guru merancang pembelajaran dengan pendekatan deep learning berbasis TIK dan implementasinya dalam pembelajaran biologi. Hasil akhir program diharapkan guru memiliki kompetensi profesional untuk menciptakan pembelajaran biologi yang inovatif dan bermakna. Hasil analisis dokumen modul ajar dan praktik implementasi pembelajaran yang diamati, didapatkan profil kompetensi profesional guru seperti disajikan pada Tabel 2.

Table 2. Kompetensi profesional guru biologi

No	Aspek	Deskripsi	Kualitas Capaian (%)
1	Mengembangkan modul ajar	Guru terampil menyusun modul	94
	berbasis DL	ajar berbasis Deep Learning	
		(DL)	
2	Menerapkan strategi	Inkuiri, discovery, PjBL, PBL,	92
	pembelajaran aktif, inovatif	eksperimen, pengamatan, diskusi	
		kolaboratif	
3	Mengintegrasikan TIK yang	Video interaktif, G-form, Canva,	89
	interaktif	G-site, G-classroom, Quiziz,	
		Padlet, Kahoot.	

4	Mengakomodasi diantara 8	Menentukan 8 dimensi profil	94
	dimensi profil lulusan	yang sesuai dengan CP dan	
	•	Tujuan pembelajaran	
5	Menerapkan prinsip-prinsip	Mindful, Meaningful, Joyful	90
	pembelajaran mendalam (DL)	learning	
6	Memperhatikan Lingkungan	Memanfaatkan Lingkungan	87
	Belajar	Belajar: kolaborasi lintas mapel,	
		kolaborasi antar siswa,	
		mengundang narasumber,	
7	Memberi pengalaman Belajar	Mengajak siswa memahami,	89
	yang bermakna untuk siswa	menganalisis, mengklasifikasi,	
		merancang, dan berefleksi	
8	Mengimplementasikan	Mempraktikkan pembelajaran	90
	pembelajaran	aktif berbasis DL	

Hasil kegiatan pelatihan pembelajaran *Deep Learning* (DL) berbasis Teknologi Informasi dan Komunikasi menunjukkan bahwa guru memiliki kompetensi profesional yang sangat baik pada beberapa aspek kompetensi professional guru. Rata-rata capaian pada seluruh indikator berada di atas 85%, menunjukkan efektivitas pelatihan dalam meningkatkan kemampuan profesional guru biologi. Kemampuan mengembangkan modul ajar berbasis *Deep Learning* (94%). Guru memiliki keterampilan yang sangat baik dalam menyusun modul ajar berbasis DL. Guru mampu merancang pembelajaran yang menuntun siswa untuk berpikir mendalam, kreatif, dan reflektif (Gunardi, 2020). Penguasaan ini mencerminkan peningkatan pada aspek perencanaan pembelajaran profesional, sesuai dengan tuntutan Kurikulum Merdeka (Lafendry, 2020).

Pada penerapan strategi pembelajaran aktif dan inovatif diperoleh rerata capaian 92%. Guru berhasil menerapkan berbagai pendekatan seperti *inquiry*, *discovery learning*, *project-based learning* (PjBL), dan *problem-based learning* (PBL). Strategi-strategi tersebut memperkuat kemampuan guru dalam memfasilitasi pembelajaran yang berorientasi pada keaktifan dan keterlibatan siswa, yang merupakan salah satu indikator penting dalam kompetensi pedagogik dan profesional guru (Ratnasari & Nugraheni, 2024).

Guru mampu mengintegrasikan TIK secara interaktif (89%). Penggunaan berbagai aplikasi seperti Google Form, Canva, Google Site, Google Classroom, Quiziz, Padlet, dan Kahoot menunjukkan bahwa guru telah mampu memanfaatkan teknologi secara efektif dalam pembelajaran (Zuhri et al., 2024). Hal ini mengindikasikan peningkatan kompetensi digital yang mendukung pembelajaran abad ke-21 dan mendorong pembelajaran yang interaktif serta adaptif terhadap perkembangan teknologi pendidikan (Raup et al., 2022). Pengintegrasian 8 dimensi profil pelajar Pancasila (94%). Guru mampu menyesuaikan dimensi profil pelajar Pancasila dengan capaian pembelajaran dan tujuan pembelajaran. Ini menunjukkan pemahaman komprehensif terhadap orientasi nilai dan karakter dalam proses pembelajaran. Integrasi ini memperkuat peran guru sebagai pendidik profesional yang tidak hanya fokus pada aspek kognitif, tetapi juga karakter dan nilai-nilai kemanusiaan.

Guru menerapkan prinsip *mindful, meaningful,* dan *joyful learning*, yang menumbuhkan kesadaran belajar, pemaknaan terhadap materi, dan suasana belajar yang menyenangkan (Sugiharto, 2025). Hal ini menandakan bahwa guru mampu menginternalisasi filosofi *Deep Learning* sebagai pendekatan yang berfokus pada kedalaman pemahaman dan keterkaitan antar konsep. Guru mampu merancang pembelajaran dengan memanfaatkan lingkungan belajar yang mendukung proses pembelajaran. Guru mulai memanfaatkan lingkungan belajar melalui kolaborasi lintas mata pelajaran, antar siswa, dan dengan menghadirkan narasumber eksternal. Meskipun masih menjadi aspek dengan capaian relatif lebih rendah, hal ini menunjukkan adanya upaya menuju pembelajaran kontekstual yang relevan dengan dunia nyata dan komunitas sekitar.

Guru mampu merancang aktivitas yang menuntun siswa untuk memahami, menganalisis, mengklasifikasi, merancang, dan merefleksikan pengetahuan. Pembelajaran Biologi yang kolaboratif dan partisipatif menjadi sarana efektif untuk mewujudkan generasi cerdas, kompetitif dan berkarakter (Sukaesih, 2023). Peserta didik perlu dibekali dengan penguasaan literasi baru (new literacy) melalui pembelajaran yang mendalam. Implementasi pembelajaran berbasis *Deep Learning* (90%). Guru berhasil mempraktikkan pembelajaran aktif berbasis DL di kelas, menunjukkan keterpaduan antara kemampuan merancang dan mengimplementasikan strategi pembelajaran yang mendalam. Capaian ini memperlihatkan bahwa pelatihan tidak hanya meningkatkan pemahaman teoretis, tetapi juga keterampilan praktis guru dalam mengelola proses belajar mengajar.

Hasil program ini dievaluasi, dimonitoring agar ada keberlanjutan. Refleksi dilakukan bersama guru ketika monitoring pelaksanaan pembelajaran di sekolah. Guru memberikan respon positif terhadap program yang telah dilaksanakan. Guru menyatakan bahwa: (1) Materi pelatihan sangat bermanfaat bagi peningkatan kompetensi profesional guru, (2) Memberikan pemahaman yang jelas bagaimana penerapan *Deep Learning*

dalam pembelajaran biologi, (3) Memberi tambahan wawasan tentang kerangka kerja pembelajaran mendalam (deep learning), (4) Sertifikat 32 jam, bermanfaat untuk pelaporan kinerja guru.

KESIMPULAN

Pelatihan terprogram yang dirancang untuk memperkuat kompetensi profesional guru biologi dalam implementasi pembelajaran *deep learning* berbasis Teknologi Informasi dan Komunikasi (TIK) memberikan hasil yang sangat positif. Hasil program menunjukkan guru biologi memiliki pemahaman yang baik dan sangat baik terkait pembelajaran *deep learning*, serta 90% guru terampil merancang pembelajaran dengan pendekatan *deep learning* berbasis TIK.

DAFTAR PUSTAKA

- Biora, S., Arafat, Y., & Mulyadi, M. (2021). The influence of teachers' professional competency and working discipline on teachers' performance at state elementary school. *JPGI (Jurnal Penelitian Guru Indonesia)*, 6(2), 514. https://doi.org/10.29210/021082jpgi0005
- Chen, Y. C., & Techawitthayachinda, R. (2021). Developing deep learning in science classrooms: Tactics to manage epistemic uncertainty during whole-class discussion. *Journal of Research in Science Teaching*, 58(8), 1083–1116. https://doi.org/10.1002/tea.21693
- Estrada-Molina, O., Mena, J., & López-Padrón, A. (2024). The Use of Deep Learning in Open Learning: A Systematic Review (2019 to 2023). *International Review of Research in Open and Distributed Learning*, 25(3), 370–393. https://doi.org/10.19173/irrodl.v25i3.7756
- Fauzi, A. (2022). Implementasi Kurikulum Merdeka Di Sekolah Penggerak. *Pahlawan: Jurnal Pendidikan-Sosial-Budaya*, 18(2), 18–22. https://doi.org/10.57216/pah.v18i2.480
- Fuadah, A. T., Mudjenan, I. M., & Hasan, M. L. (2023). Persfektif: Pemanfaatan Teknologi Informasi Dan Komunikasi Dalam Pembelajaran Abad 21 Di Sekolah Menengah Pertama. *Jurnal Pendidikan Transformatif (Jupetra)*, 02(02), 154–164.
- Gunardi. (2020). Inquiry Based Learning dapat Meningkatkan Hasil Belajar Siswa dalam Pelajaran Matematika. *Social, Humanities, and Education Studies (SHEs): Conference Series*, *3*(3), 2288–2294. https://jurnal.uns.ac.id/shes
- Kemendikdasmen. (2025). Pembelajaran Mendalam. NASKAH AKADEMIK PEMBELAJARAN MENDALAM Menuju Pendidikan Bermutu Untuk Semua, hal 47.
- Kementerian Pendidikan Dan Kebudayaan. (2016). Pembinaan dan Pengembangan Profesi Guru Buku 4 Guru Pembelajar (PPGP). 17.
- Lafendry, F. (2020). Kualifikasi dan kompetensi guru dalam dunia pendidikan. *Jurnal Pendidikan Islam* (2020), 3, 1–16.
- Mahasneh, A. M., & Alwan, A. F. (2018). The effect of project-based learning on student teacher self-efficacy and achievement. *International Journal of Instruction*, 11(3), 511–524. https://doi.org/10.12973/iji.2018.11335a
- Ratnasari, D. H., & Nugraheni, N. (2024). Peningkatan Kualitas Pendidikan Di Indonesia Dalam Mewujudkan Program Sustainable Development Goals (Sdgs). *Jurnal Citra Pendidikan*, 4(2), 1652–1665. https://doi.org/10.38048/jcp.v4i2.3622
- Raup, A., Ridwan, W., Khoeriyah, Y., Supiana, S., & Zaqiah, Q. Y. (2022). Deep Learning dan Penerapannya dalam Pembelajaran. *JIIP Jurnal Ilmiah Ilmu Pendidikan*, 5(9), 3258–3267. https://doi.org/10.54371/jiip.v5i9.805
- Sugiharto, B. (2025). Pembelajaran Mendalam: Transformasi Pendidikan (Biologi) Indonesia Menuju 2045. 1–47.
- Sukaesih, S. (2023). Mewujudkan Generasi Cerdas, Kompetitif dan Berkarakter pada Abad 21 Melalui Pendidikan Biologi dan Inovasi Riset Berkelanjutan. *Prosiding Seminar Nasional Biologi XI*, 11, 16–22.
- Sümen, Ö. Ö., & Çalışıcı, H. (2016). Pre-service teachers' mind maps and opinions on STEM education implemented in an environmental literacy course. *Kuram ve Uygulamada Egitim Bilimleri*, 16(2), 459–476. https://doi.org/10.12738/estp.2016.2.0166
- Yamin, Y., Permanasari, A., Redjeki, S., & Sopandi, W. (2020). Project Based Learning To Enhance Creative Thinking Skills of the Non-Science Students. *Jhss (Journal of Humanities and Social Studies)*, 4(2), 107–111. https://doi.org/10.33751/jhss.v4i2.2450
- Zuhri, R. S., Wilujeng, I., Haryanto, H., & Ibda, H. (2024). Information communication technologies education in elementary school: a systematic literature review. *Journal of Education and Learning*, 18(3), 1078– 1090. https://doi.org/10.11591/edulearn.v18i3.21435