PERSONALIZED LEARNING AND ASSESSMENT IN EDUCATION 5.0: A SYSTEMIC LITERATURE REVIEW

Nadya Zulfa Chairunnisa¹⁾, Fani Hindun Muawanah²⁾ ^{1, 2)}Master's Program of English Language Education Universitas Negeri Semarang

Indonesia

nadyazc@students.unnes.ac.id, fanihindunmuawanah12@students.unnes.ac.id

Abstract

The adoption of Industry 5.0 technologies and practices in education raises the possibility of Education 5.0. It has paved the way for the widespread adoption of digital learning systems. These innovative platforms have the potential to provide personalized learning experiences, tailored to the unique needs and preferences of each student. This systematic review aims to get an overview of the implementation of personalized learning and assessment using educational technology in Education 5.0. The article searching method was carried out through two online databases: ScienceDirect and Taylor & Francis Online, and obtained 17 articles. The articles were extracted using PRISMA flow. As a result, the implementation of personalized learning in various countries can be described in the data results. The participants came from various educational backgrounds, such as elementary or high schools and universities. All studies in this systematic review have employed different approaches. The researchers also find that the implementation of personalized learning and assessment using educational technologies has experienced some challenges. This review does not cover all countries but the findings will be contributing to the literature expansion. From the results, there is an urge to consider the use of educational technology in implementing personalized learning and assessment.

Keywords - personalized learning, feedback, assessment, technology

Introduction

One of the most significant developments in humanity over the last 50 years has been tremendous technical advancement and growth, particularly with the emergence of the internet (Kamal et al., 2019). Nowadays, practically everyone utilizes the internet on their personal devices. Almost every student uses the internet for both information and learning purposes (Sudibjo et al., 2019). Our lives have changed dramatically during the past decade. Digital technology has transformed us from an industrial civilization focused on manufacturing to an information culture. Digital data and information technology pervade both our personal and professional lives, allowing us to generate and share ideas, resulting in the establishment of new businesses. However, Purnamasari et al. (2019) ask whether we are prepared to tackle the new digital era, not just in industry, but also in the transformation of society into Society 5.0.

Industry 5.0 is a new industrial paradigm that prioritizes sustainability, resilience, and a stronger focus on the needs of people (Breque et al., 2021; Dixson-Declève et al., 2022). It centers technological ecology around humans. In order to attain significant productivity, it sets up technologies practices and to accommodate human demands and circumstances. Müller (2020) presents technologies that support the concept of Industry 5.0 include: (a) human-centric solutions and human-machine-interaction technologies: bio-inspired (b) technologies and smart materials; (c) realtime-based digital twins and simulation; (d) cyber-safe data transmission, storage and analysis technologies; and (e) technologies for energy efficiency and trustworthy economy. These technologies expand the Industry 4.0 technology that already exists. For example, advanced generative AI technology is used in HMI tools such as ChatGPT to generate humanlike, coherent, and contextually relevant

responses to input prompts such as queries, instructions, etc.

The adoption of Industry 5.0 technologies and practices in education raises the possibility of Education 5.0. Sydle (2022) defines it as the utilization of Industry 5.0 technologies and practices to create more humanized teaching, focusing on learner well-being, societal transformations, and environmental sustainability. It is a new educational paradigm based on the idea of Industry 5.0, with humans at the core of the learning process. It promotes the use of technology-enabled learning to foster costeffectiveness, increased reach, scalability, flexibility, and other advantages. It utilizes technology Industry 5.0 (such as robotics/cobots, AI, big data, and so on) to personalize learning and education while minimizing health and environmental impacts.

The rapid advancements in technology have paved the way for the widespread adoption of digital learning systems. These innovative platforms have the potential to provide personalized learning experiences, tailored to the unique needs and preferences of each individual student (Xie et al., 2019). Personalized feedback, a key component of these systems, has emerged as a crucial factor in enhancing the effectiveness of digital learning (Lodge et al., 2018; Shaw et al., 2014).

Personalized learning prioritizes a clear understanding of the needs and goals of each student, and the tailoring of instruction to address those needs and goals (Ober et al., 2023). These needs and goals, as well as progress towards meeting them, are highly visible and easily accessible to teachers, students, and their families, and are frequently discussed and updated accordingly. The benefits of personalized learning have been widely recognized, even before the widespread use of modern technologies for personalized learning, with one-to-one tutoring being known to facilitate learning

through the provision of personalized instruction.

The rapid development of information communication technology has enabled the personalization of learning through various methods, including the implementation of intelligent learning systems, the integration of learner preferences, and the analysis of individual learning data. One key difference between personalized learning and other similar terms is that the former is mostly used when classroom instruction involves learning technologies such as adaptive learning systems, intelligent tutoring systems, or even educational robots, which continuously collect data about students and adjust the learning experience accordingly. These learning technologies algorithms leverage and artificial intelligence to tailor the pace, instructional materials, and feedback to the individual needs and preferences of each student (Dumont & Ready, 2023; Xie et al., This personalization of 2019). the learning experience aims to optimize instruction for the needs of each learner, with objectives, approaches, and content varying based on individual requirements (Xie et al., 2019).

The shift towards technology-enabled personalized learning has been driven by the recognition that traditional classroom instruction often fails to address the diverse needs of students (Shaw et al., 2014). As Bloom's "Two Sigma Problem" demonstrated, one-to-one tutoring can significantly improve student performance. but providing such personalized instruction at scale is often challenging due to logistical and cost constraints. The integration of learning technologies offers a potential solution, allowing for the scalable implementation of personalized learning strategies (Ober et al., 2023). Previous studies have showed how technologies in Education 5.0 provide personalized learning with better strategies implementation. From and this

background, the researchers want to dig deeper into the implementation of personalized learning integrated with technologies in Education 5.0. The researchers assume that the integration of educational technologies can present unique results in personalized learning and assessment. It is hoped that this study can help related parties in any education contexts understand more about teaching and learning process in Education 5.0 and improve the quality of learning. Therefore, the researchers aim to know the overview of personalized learning and assessment and explore the implementation of personalized learning and assessment using educational technology in Education 5.0.

Methodology

The article selection process used in this systematic literature review was carried out based on the Preferred Items for Systematic Review and Meta-analysis (PRISMA) (Moher et al., 2009). PRISMA can be used as a guideline to ensure the completeness of studies when conducting and reporting systematic reviews and meta-analysis (Tam et al., 2019). The first

step was articles searching in several journal databases, such as Taylor & Francis Online and ScienceDirect. To get the right articles, a keyword search process was carried out with the following combinations: 'personalized learning' AND/OR 'personalized assessment' AND/OR 'education 5.0'. Researchers also included the inclusion and exclusion criteria. The inclusion criteria include; First, the article must discuss personalized learning. personalized assessment/feedback, and self-assessment as the main variables. Second, the article should have been published in international journals, through a peerreview process, written in English, available in full-text, and published from January 2019 to June 2024. Third, the studies reviewed were empirical studies. Meanwhile, the exclusion criteria include; First, the article does not discuss personalized learning, personalized assessment/feedback. and self-assessment as the main variables. Second, articles that are not available in full text, are not written in English and were published before 2019. The flow of PRISMA can be seen in Figure 1.

Proceedings of UNNES-TEFLIN National Conference, Vol.6 (2024) July 6, 2024

Identification of new studies via databases and registers

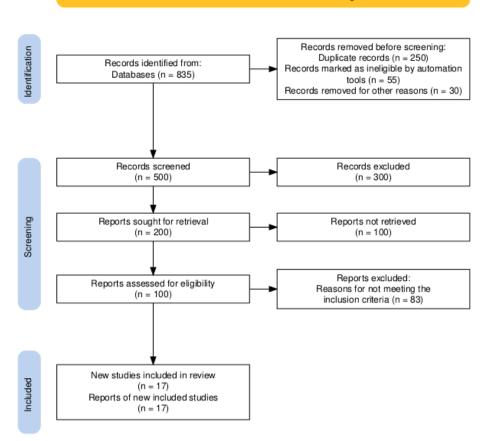


Figure 1. Flow Diagram of Study Selection Process (Haddaway, 2022)

Database	Total Articles Identified	Total Articles that Do Not Meet Criteria	Total Articles that Meet Criteria	Article
Taylor & Francis Online	465	460	5	Chen & Perez, (2023). Rico et al., (2022). Carroll (2020). Benraghda et al., (2022). Zheng et al., (2023).
ScienceDirect	570	558	12	Chaipidech et al., (2022). Yang et al., (2022). Shoaib et al., (2024). Lin & Chang, (2023). Huang et al., (2023). Alrawashdeh et al., (2023). Dan et al., (2024). Zhang et al., (2022). Bhutoria (2022).

Gunawardena et al.,
(2024).
Mötteli et al., (2023).
Ingkavara et al.,
(2022).

Finding and Discussion

After the selection process of the studies, only seventeen were relevant to be included in this review. These came from various countries, namely Thailand (2), Japan, India (2), Canada, Taiwan, USA (3), Hongkong, Spain, Australia (2), Algeria, China, and Switzerland. The participants came from various educational backgrounds, such as elementary or high schools (Alrawashdeh et al., 2023; Chaipidech et al., 2022; Chen & Perez, 2023; Dan et al., 2024; Gunawardena et al., 2024; Ingkavara et al., 2022; Motteli et al., 2023) and university (Benraghda et al., 2022; Carroll, 2020; Huang et al., 2023; Juan et al., 2022; Shoaib et al., 2024; Yang et al., 2022; Zhang et al., 2022; Zheng et al., 2023).

All studies in this systematic review have employed different approaches, such as quantitative (Carroll, 2020; Chaipidech et al., 2022; Dan et al., 2024; Huang et al., 2023; Ingkavara et al., 2022; Juan et al., 2022; Motteli et al., 2023; Yang et al., 2022), qualitative (Chen & Perez, 2023; Gunawardena et al., 2024), mixedmethods (Benraghda et al., 2022; Zheng et al., 2023), systematic reviews (Bhutoria, 2022; Lin & Chang, 2023), meta-analysis (Alrawashdeh et al., 2023), design science research (Shoaib et al., 2024), and instrument development and content validation (Zhang et al., 2022). The overview of seventeen studies related to personalized learning and assessment can be seen in Table 2.

Building on the idea that self-assessment can improve student learning, Carroll (2020) investigates how well business students evaluate their own work. The study aims to see if clear criteria and feedback could enhance students' selfassessment accuracy, which is considered a key skill for self-regulated learning. Employing a quantitative, observational approach, the research examined changes in student accuracy across two tasks. Interestingly, students initially overestimated their performance, but improved after accuracy receiving feedback. Furthermore, the study reveals that different student characteristics and initial assessment tendencies (overestimation underestimation) vs. influence how accuracy changes over time. These findings suggest that selfassessment, when supported with clear criteria and feedback, can be a valuable tool for developing students' judgment and self-regulation skills.

Chaipidech et al. (2022) explore the use of a personalized learning system to support development science teachers' of Technological Pedagogical and Content Knowledge (TPACK). The research employed a quantitative approach, with 161 in-service teachers participating in a teacher professional development (TPD) program that utilized the personalized system. Founded in andragogy, the program aimed to improve teachers' TPACK through the intervention. The study measures teachers' TPACK levels before and after the program, demonstrating significant improvement due to the TPD program with the personalized learning system.

As stated by Dan et al. (2024), classroom relationships and self-regulation (SRL) influence EFL students' English proficiency in China. This study (436 4th-5th graders) finds girls reported higher use of SRL strategies but boys had slightly better English scores initially. Interestingly, the type of classroom relationship that mattered most differed by

gender. Peer relationships impacted girls' English proficiency more, while teacherstudent relationships were more important for boys. These findings highlight the complex interplay between classroom dynamics, self-regulation, and EFL learning, suggesting teachers consider both gender and social context when tailoring instruction.

Huang et al. (2023) discuss how AIpowered recommendations in a flipped classroom setting impacted students' learning. The study involved 102 college students in a systems programming course, split between a control group and an experimental group receiving personalized video recommendations. Drawing on motivation theory, the research employed a quantitative approach with pre-tests, and surveys to measure post-tests, motivation, engagement, and learning Interestingly, while outcomes. AI recommendations didn't significantly improve overall motivation, they did increase the number of students with improved motivation, particularly those with moderate initial levels. Additionally, the research finds positive impacts on learning performance and engagement for students with moderate motivation. These findings AI-powered suggest recommendations hold promise for personalizing learning experiences and improving outcomes, particularly for students needing extra motivation.

Ingkavara et al. (2022) investigate integrating a personalized learning into self-regulated approach online learning for physics (292 secondary school students). Drawing on self-regulated technology acceptance learning and theories, the study used a quasiexperimental design with pre-tests, posttests, and perception surveys. The results show that students who receive the personalized approach have significantly higher learning gains compared to the control group. The study also identifies factors influencing students' willingness

to use this approach, suggesting its potential to improve learning outcomes and user adoption.

Juan et al. (2022) explore the influence of peer assessment on learning outcomes and self-assessment accuracy higher in education (82 computer engineering students). Drawing on Vygotsky's social learning theory, the study compared individual, pair, and group peer assessment modalities in a quasiexperimental design. Students completed tasks, self-assessed their work, and then peer-assessed each other through a digital platform. Interestingly, self-assessment accuracy improved significantly when students received feedback from groups of three, particularly after excluding the lowest-scoring member. Overall, peer assessment scores were more accurate than self-assessment, and accuracy increased with the number of assessments received. These findings suggest that collaborative peer assessment, particularly in wellfunctioning groups, can be a valuable tool for improving student learning and selfevaluation skills.

In the opinion of Motelli et al. (2023) about how enjoyment of learning changes between grades 8 and 9, and how personalized learning environments can influence this development. Drawing on stage-environment fit and control-value theories, the study analyzed data from 1241 Swiss students who participated in the perLen study on personalized learning. Students completed questionnaires in both grades, reporting on their enjoyment of learning, perceived control (choice and voice), and the degree of personalization in their schools (assessed through teacher questionnaires). The analysis revealed that both the level of personalization and students' feelings of choice and voice were positively linked to their enjoyment of learning. Furthermore, changes in students' perceived voice over time also impacted the development of their learning enjoyment. These findings suggest that

personalized learning environments that empower students with choice and voice can help sustain or even increase their enjoyment of learning during this critical transition period in early adolescence.

Yang et al. (2022) investigated the effectiveness of an adaptive learning system that combines computerized adaptive testing (CAT) with the learning memorv cycle model. This quasiexperimental study involved three groups of first-year computer science students. The researchers compared a proposed system using CAT and the memory cycle to a system using only CAT and a conventional non-adaptive system. Data pre-tests, post-tests, from computer quizzes, and student usage logs revealed that students using the proposed system achieved better learning performance and showed greater engagement with practice tests and reading materials compared to the other two groups. These findings suggest that the combination of CAT and the learning memory cycle holds promise for enhancing student learning.

Chen and Perez (2023) discuss the potential of AI in enhancing assessment and personalized learning in education. They state that AI can support a wholechild perspective in assessments, focusing on collaborative problem-solving skills, digital measures of student engagement, and linguistic, social, and cultural backgrounds. AI algorithms can automate the assessment process, providing immediate feedback to students and analyzing their responses to offer personalized recommendations for instruction. This ensures that students receive targeted support and guidance tailored to their individual needs. Despite the potential benefits of AI, human involvement in the assessment process is crucial for maintaining connections and collaborative learning. Digital measures of engagement and collaboration should be supplemented with educator and peer input. However, implementing AI in

education requires addressing privacy and data security concerns, ensuring equity and accessibility, and providing teacher training and support to effectively leverage AI tools.

Meanwhile, Gunawardena et al. (2024) explores the perspectives of Australian secondary school teachers on implementing personalized learning. The study employed complexity theory and NVivo coding to analyze the teachers' views on the practicality of personalized learning. From this study, it can be seen that teachers express both enthusiasm and wariness about implementing personalized learning, highlighting the need for a nuanced understanding of the complexities involved. The complexity exists with the strategies and their applications with all students in their classes. The sanctioned curriculum poses challenges for teachers as they attempt to address students' needs and interests. The study also highlights the practical challenges and issues that teachers face in implementing personalized learning, including concerns about data management, teacher workload, and student engagement. The study suggests that complexity theory can help teachers evolve and sustain their practices managing the complexities in of personalized learning, emphasizing the professional need for ongoing development and support. Benraghda et al. (2022) explores the role

of self-assessment in enhancing the learning outcomes of college students in English oral presentations. The study employed a mixed-methods approach, combining both quantitative and qualitative data to analyze the perceptions and choices of students regarding selfassessment. Students perceive selfassessment as an essential tool for improving their oral presentation skills, particularly in terms of content organization, language use, and delivery techniques. They employ several selfassessment strategies, such as peer review,

self-reflection, and video recordings, which help them refine their presentation skills. The study finds that students who engage in self-assessment report higher levels of confidence and motivation in their oral presentations, ultimately leading improved learning outcomes. to Meanwhile, teachers also play a crucial role in providing feedback and guidance, which help students develop their selfassessment skills. Thus, the study emphasizes the need for educators to incorporate self-assessment strategies into their teaching practices, particularly in English oral presentations. This approach can help students develop a more proactive and reflective approach to learning, leading enhanced academic to performance and lifelong learning skills. Zheng et al. (2023) investigates the effects of different sequences of formative assessment practices on learners' English public speaking anxiety and performance. The study employed a mixed-methods approach, combining both quantitative and qualitative data to analyze the outcomes. The research finds that learners who engage in self-assessment first experience a significant reduction in public speaking anxiety and perform better in their English public speaking tasks compared to those who engage in peer-assessment first. The results suggest that the sequence of formative assessment practices matters. Self-assessment should be arranged first for learners with higher levels of anxiety. while peer-assessment should be conducted first for learners with lower levels of anxiety. The research emphasizes the importance of incorporating formative assessment practices into language learning, particularly in English public speaking courses. The results suggest that educators should consider the sequence of formative assessment practices and the use of video-based formative practice to support learners in reducing anxiety and improving performance.

Bhutoria (2022) explores how AI and big data are being used to personalize education in the US, China, and India. Drawing on the concept of personalized learning, the study reviewed research published between 2019-2021 to identify key themes using techniques like topic modeling. The analysis of over 2000 papers revealed how AI is being used to tailor learning content, identify student needs and learning difficulties, and optimize teaching approaches. These findings AI-powered suggest that personalized education holds promise for improving educational outcomes bv catering to individual student needs.

Lin and Chang (2023) propose a framework (CHAT-ACTS) for integrating personalized chatbots in education to promote active learning and self-regulated learning (SRL). This conceptual paper examines the benefits of chatbots in education through a literature review, highlighting how personalized chatbots can provide feedback and guidance to support active learning and SRL strategies. The CHAT-ACTS framework offers a theoretical foundation for educators to leverage chatbots in enhancing student engagement and self-regulation in the learning process.

Alrawashdeh et al. (2023) conduct a metaanalysis to explore how personalized and adaptive learning technologies (PAL) impact K-12 students' reading literacy. Drawing on the Simple View of Reading model, the research examined the effectiveness of various PAL interventions on different reading skills (decoding, comprehension) and across different studies. The analysis involved statistically synthesizing data from multiple randomized controlled trials comparing PAL interventions to traditional reading The results revealed a instruction. moderate overall positive effect of PAL interventions on reading literacv (compared to traditional methods), with some variation in effectiveness influenced Proceedings of UNNES-TEFLIN National Conference, Vol.6 (2024)

July 6, 2024

by factors like language of instruction and device type. These findings suggest that PAL interventions hold promise for improving reading literacy skills in K-12 students, but their effectiveness can be influenced by specific implementation characteristics.

Shoaib et al. (2024) propose an AI-based student success predictor to personalize learning experiences in campus management systems. Drawing on learning analytics, the study developed an ensemble machine learning model by collecting and integrating student data from various databases. This model achieved high accuracy in predicting student grades (93%), identifying at-risk students (93%), and forecasting student retention/dropout (92%). These findings suggest that AI-powered student success predictors can be valuable tools for Table 2. Overview Matrix

optimizing learning environments and supporting students at risk.

Zhang et al. (2022) focus on developing and validating a tool (PLSI) to measure perceptions of personalized student learning environments based on the Universal Design for Learning (UDL) framework. UDL promotes creating flexible learning experiences that reduce barriers for all learners. This study involved instrument development and content validation. Experts in UDL evaluated the PLSI's items for clarity and relevance using a rating scale. The results indicated a high level of content validity for the PLSI, suggesting it can be a valuable tool for measuring student perceptions of personalized learning environments designed with UDL principles in mind.

N 0.	Author(s), Year	Title	Count ry	Theore tical Frame work	Dependent Variable	Independent Variable	Metho d	Partici pants	Findings
1.	Pawat Chaipid ech, Niwat Srisawa sdi, Tanacha i Kajorn manee, Kornch awal Chaipah (2022)	A personaliz ed learning system- supported profession al training model for teachers' TPACK developm ent	Thaila nd	Andrag ogy	Teachers' TPACK	The TPD program design with an embedded personalized learning system.	Quantit ative	161 in- service science teachers from 92 seconda ry schools located in the Northea stern region of Thailan d that voluntar ily particip ated in the propose d TPD program	The in- service teachers significan tly improved their TPACK after participating in the TPD program with the personalized learning system.

2.	Albert C.M. Yang, Brendan Flanaga n, Hiroaki Ogata (2022)	Adaptive formative assessmen t system based on computeri zed adaptive testing and the learning memory cycle for personaliz ed learning	Japan	Comput erized adaptiv e testing (CAT) and learning memory cycle model.	Students' learning performanc e and engagement	Three different assessment systems - the proposed system combining CAT and memory cycle, the system using only CAT, and the conventional non-adaptive system.	Quasi- experi mental design.	Three classes of first- year universi ty students from the Depart ment of Comput er Science at a universi ty in Taiwan, with one class designat ed as experim ental group A, one as experim ental group B, and one as the control group.	The students who used the proposed assessmen t system based on CAT and learning memory cycle outperfor med those who used the other two systems in terms of learning performan ce and engageme nt in practice tests and reading materials.
3.	Muham mad Shoaib, Nasir Sayed, Jaiteg Singh, Jana Shafi, Shakir Khan, Farman Ali (2024)	AI student success predictor: Enhancin g personaliz ed learning in campus managem ent systems	India	Learnin g analytic s and educati onal data mining	Student grade, risk level, and retention/dr opout	The student attributes and performance data collected from different databases and used as features for the machine learning models.	Design science researc h	Student s whose data is collecte d and analyze d by the propose d AI student success predicto r model.	The proposed AI student success predictor model which can predict student grades with 93% accuracy, identify at-risk students with 93% accuracy, and forecast student retention/ dropout

									with 92% accuracy when evaluated on test data.
4.	Michael Pin- Chuan Lin, Daniel Chang (2023)	CHAT- ACTS: A pedagogic al framewor k for personaliz ed chatbot to enhance active learning and self- regulated learning	Canad a	the CHAT- ACTS framew ork propose d by the authors	There is no dependent variables clearly defined in this article as it presents a conceptual framework rather than empirical research with variables.	There is no independent variables clearly defined in this article as it presents a conceptual framework rather than empirical research with variables.	Literat ure review	There is no mention of research respond ents in this article as it appears to be a concept ual paper proposi ng a theoreti cal framew ork rather than empiric al research	The proposal of the CHAT- ACTS theoretica l framewor k to guide the integratio n of personaliz ed chatbots to enhance active learning and SRL.
5.	Anna Y.Q. Huang, Owen H.T. Lu, Stephen J.H. Yang (2023)	Effects of artificial Intelligen ce– Enabled personaliz ed recomme ndations on learners' learning engageme nt, motivatio n, and outcomes in a flipped classroom	Taiwa n	learning motivati on theory	Students' learning motivation, engagement and outcomes.	AI-enabled personalized video recommendati ons (whether students received recommendati ons or not).	Quantit ative approa ch	102 college students enrolled in a systems program ming course who were assigne d to a control group and experim ental group.	AI- enabled personaliz ed recomme ndations did not significan tly improve students' motivatio n but increased the proportio n of students with improved motivatio n, especially

									those with moderate motivatio n level. It also improved learning performan ce and engageme nt of students with moderate motivatio n.
6.	Jennifer J. Chen & ChareM one' Perez (2023)	Enhancin g Assessme nt and Personaliz ed Learning Through Artificial Intelligen ce	USA	Learnin g theory that assessm ents inform responsi ve teachin g. Vygots ky's zone of proxima l develop ment theory.	Students' language and literacy developmen t and learning outcomes.	The use of Amira as an AI-powered assessment and instructional tool.	Qualita tive case study approa ch	Ms. Perez's 2nd grade bilingua l classroo m of 28 low- income Hispani c students in New Jersey, US.	Amira enhances assessmen t, facilitates differentia ted instructio n, and generates comprehe nsive reports to inform teaching practice for bilingual learners. It makes teaching and learning more effective and efficient.
7.	Ghaida S. Alrawas hdeh, Shea Fyffe, Renato F.L. Azeved o, Nathan M. Castillo	Exploring the impact of personaliz ed and adaptive learning technolog ies on reading literacy: A global	USA	The Simple View of Reading (SVR) model	Reading literacy/ach ievement outcomes as measured post- intervention using standardize d assessments	The PAL interventions/ treatments implemented and their characteristics (e.g. type of PAL, language, device used etc.) that could potentially	Meta- analysi	K-12 students who particip ated in studies evaluati ng the effectiv eness of PAL interven tions on	PAL interventi ons had a moderate positive effect (g=0.29) on reading literacy outcomes compared to

July 6, 2024 (2024) impact reading traditional metaliteracy analysis reading instructio outcomes. outcom n. es Moderato r analyses also revealed factors influencin g interventi on effectiven ess such as language

of instructio

Proceedings of UNNES-TEFLIN National Conference, Vol.6 (2024)

								n and device type.
8. Qingyao Dan, Barry Bai, Qinhui Huang (2024)	Gender difference s in the relations between EFL students' classroom relationsh ips and English language proficienc y: The mediating role of self- regulated learning strategy use	Hongk ong	Sociocu ltural theory	English language proficiency	Classroom relationships (teacher- student relationships and peer relationships) and SRL strategy use (metacognitiv e strategies and social strategies). SRL strategy use also serves as a mediator.	Quantit ative	436 4th- 5th grade EFL students in mainlan d China.	 Girls reported higher use of metacogni tive and social SRL strategies than boys. Boys reported slightly higher English proficienc Y. 2) Classroo m relationsh ips influence d SRL strategy use and English proficienc Y. 2) Classroo m relationsh ips influence d SRL strategy use and English proficienc Y differentl Y between boys and girls. 3) Peer relationsh ips

									girls' English proficienc y through SRL strategies, while teacher- student relationsh ips predicted boys' English proficienc y through SRL strategies.
9.	Juan Ramón Rico- Juan, Cristina Cachero a and Hermen egilda Macià (2022)	Influence of individual versus collaborat ive peer assessmen t on score accuracy and learning outcomes in higher education: an empirical study	Spain	Vygots ky's social develop ment theory	Self- assessment accuracy and learning outcomes	The modality of peer assessment (individual, pairs, groups of three)	Quasi- experi mental design	82 first- year comput er enginee ring students from the Univers ity of Castilla- La Mancha in Spain.	Students' self- assessmen t accuracy significan tly improved when peer assessmen t was done in groups of three, especially when excluding the lowest 20% performer s. Peer assessmen t scores were generally more accurate than self- assessmen t and accuracy improved with more assessmen ts received.
1 0.	Ling Zhang, James	Measurin g personaliz	USA	Univers al Design	The content validity of	The ratings of relevance and clarity	Instru ment develo	7 experts in UDL	1) PLSI yielded an

	D. Basham , Richard Allen Carter Jr. (2022)	ed learning through the Lens of UDL: Developm ent and content validation of a student self-report instrumen t		for Learnin g (UDL) framew ork	the PLSI instrument	provided by the UDL experts for each PLSI item. Higher ratings would indicate higher content validity of the instrument.	pment and content validati on.	who were recruite d to evaluate the content validity of the PLSI instrum ent.	excellent level of item-level content validity index (I- CVI) for relevance across all items. 2) PLSI yielded an average scale- level content validity index (S- CVI) of 0.97 for relevance and an average S-CVI of 0.99 for clarity across all constructs
1	Danny Carroll (2020)	Observati ons of student accuracy in criteria- based self- assessmen t	Austra lia	Develo ping evaluati ve judgem ent	student self- assessment accuracy, measured by the difference between student and instructor marks.	factors like student characteristics (course level, residency), self- assessment type, and task (Task 1 vs Task 2).	Quantit ative	Student s from two business courses - a first- year postgra duate commer ce course and a second- year undergr aduate manage ment course in an Australi an universi ty.	Most students initially over- assessed, but accuracy generally improved from Task 1 to Task 2 after feedback. Different types of self- assessors (over, under, accurate) showed different patterns in marks and accuracy change.

1 2.	Aditi Bhutori a (2022)	Personaliz ed education and Artificial Intelligen ce in the United States, China, and India: A systemati c review using a Human- In-The- Loop model	India	The concept of persona lized educati on	Outcomes/r esults of integrating AI for personalize d education.	The use of AI and big data technologies for personalized education	System atic literatu re review	Literatu re and research publishe d between 2019- 2021 on applicat ions of AI in educatio n from the IEEE Xplore databas e.	Identificat ion of themes around how AI is successful ly catering to individual student needs and customizi ng content. It also flags learning difficultie s and optimizes teaching approache s.
1 3.	Maya Gunawa rdena, Penny Bishop, Kithmin i Avirupp ol (2024)	Personaliz ed learning: The simple, the complicat ed, the complex and the chaotic	Austra lia	Comple xity theory	Teachers' conceptuali zation and implementa tion of personalize d learning	Complexity theory lens/classifica tions of simple, complicated, complex and chaotic	Qualita tive case study approa ch	7 teachers from a K-10 school in the Australi an Capital Territor y who volunte ered to particip ate in the study	 Teachers' definition s of personaliz ed learning were similar but their perspectiv es on implemen tation conflicted . Data was classified into simple, complicat ed, complex and chaotic domains based on complexit y theory to analyze

									teachers' views. 3. Teachers were enthusiast ic about personaliz ed learning in theory but wary of practical implemen tation issues.
1 4.	Abdelm adjid Benragh da, Noor Raha Mohd Radzua n2 and Fatima Ali Salah Lardhi (2022)	Self- assessmen t as a self- regulated learning approach in English oral presentati ons: College students' choices and perceptio ns	Algeri a	Self- regulate d learning framew ork	The engineering students' perceptions towards self- assessment strategy.	The self- assessment training received and its implementati on in oral presentations.	Mixed- method approa ch	110 enginee ring students from the college of enginee ring, Depart ment of Civil Enginee ring & Earth Resourc es of a public universi ty in Malaysi a	The engineeri ng students had positive perceptio ns towards self- assessmen t both before and after its implemen tation in developin g their oral presentati on skills, with slightly higher scores in the post- questionn aire.
1 5.	Chunpin g Zhenga , Lili Wanga and Ching Sing Chai (2023)	Self- assessmen t first or peer- assessmen t first: effects of video- based formative	China	- Formati ve assessm ent theories and its positive effects	- Public speaking anxiety - Public speaking performanc e	Sequence of formative assessment (self- assessment first vs. peer assessment first).	Mixed- method s approa ch	51 undergr aduate English majors enrolled in a 16- week English public	- Learners in the self- assessmen t first group showed significan tly lower public

		practice on learners' English public speaking anxiety and performan ce		on learners' perform ance and reducin g anxiety. - Theorie s regardin g foreign languag e anxiety (FLA) and public speakin g anxiety (PSA), their sources and ways to reduce them.				speakin g course at a universi ty in China.	speaking anxiety than those in the peer assessmen t first group. - Learners in the peer assessmen t first group showed significan tly better public speaking performan ce.
1 6.	Christin e Motteli, Urs Grob, Christin e Pauli, Kurt Reusser, Rita Stebler (2023)	The influence of personaliz ed learning on the developm ent of learning enjoymen t	Switze rland	The stage- environ ment fit theory and control- value theory	Learning enjoyment	Degree of personalizatio n, choice, voice, and their development over time between grades 8 and 9.	Analyz ing longitu dinal data from the perLen study using latent change modeli ng.	35 seconda ry schools in Switzerl and that particip ated in the perLen study on personal ized learning . A total of 1241 grade 8 students complet ed question naires in 2014, of which 953 also complet	Both the extent of personaliz ation in schools and students' perceptio n of choice and voice are positively related to learning enjoymen t. A change in students' perceptio n of voice also affects the developm ent of learning

July 6, 2024									
								ed it in 2015 when they were in grade 9.	enjoymen t.
1 7.	Thanyal uck Ingkava ra, Patchari n Panjabu ree, Niwat Srisawa sdi, Suthipo rn Sajjapa nroj (2022)	The use of a personaliz ed learning approach to implemen ting self- regulated online learning	Thaila nd	Self- regulate d learning theory and technol ogy accepta nce theory.	 Students' learning achievemen t Students' behavioral intention to use the learning system 	 Type of learning approach - conventional self-regulated online learning vs self-regulated online learning with personalized learning approach. Students' perceptions of various aspects like usefulness, ease of use, impacts on 	Quantit ative approa ch throug h a quasi- experi mental design	292 seconda ry school students who studied electric circuit topic in physics course	The experime ntal group who received self- regulated online learning guided by personaliz ed learning approach had significan tly higher post-test and learning

learning etc.

Proceedings of UNNES-TEFLIN National Conference, Vol.6 (2024) July 6, 2024

Conclusion

This study aims to provide an overview and predictors of the latest studies related to personalized learning and assessment. The researchers found and analyzed 17 studies that were selected based on inclusion and exclusion criteria. These came from various countries, namely Thailand (2), Japan, India (2), Canada, Taiwan, USA (3), Hongkong, Spain, Australia (2), Algeria, China, and Switzerland. All studies employ different research approaches. The researchers also implementation that the find of personalized learning and assessment technologies using educational has experienced many challenges. This review does not cover all countries but the

gain scores than

control group. The study also identified various predictors that influence d students' behaviora 1 intention to use this learning approach.

the

findings will be contributing to the literature expansion. From the results, there is an urge to consider the use of educational technology in implementing personalized learning and assessment.

References

Alrawashdeh, G. S., Fyffe, S., Azevedo, R. F., & Castillo, N. M. (2023). Exploring the impact of personalized and adaptive learning technologies on reading literacy: A global meta-analysis. *Educational* Research Review, 100587. Benraghda, A., Mohd Radzuan, N. R., & Lardhi, F. A. S. (2022). Self-assessment as a self-regulated learning approach in English oral presentations: College students' choices and perceptions. Cogent Education, 9(1), 2123472. Bhutoria, A. (2022). Personalized education and artificial intelligence in the United States, China, and India: A systematic review using a human-in-theloop model. *Computers and Education:* Artificial Intelligence, 3, 100068. Breque, M., De Nul, L., & Petridis, A. (2021). Industry 5.0: Towards a sustainable, human-centric, and resilient European industry. Brussels: European Commission. Brown, H. D., & Lee, H. (2015). Teaching by principles: An interactive approach to language pedagogy. Pearson. Carroll, D. (2020). Observations of student accuracy in criteria-based selfassessment. Assessment & Evaluation in Higher Education, 45(8), 1088-1105. Chaipidech, P., Srisawasdi, N., Kaiornmanee, T., & Chaipah, K. (2022). A personalized learning system-supported professional training model for teachers' TPACK development. Computers and Education: Artificial Intelligence, 3, 100064. Chen, J. J., & Perez, C. (2023).

Enhancing Assessment and Personalized Learning Through Artificial Intelligence. *Childhood Education*, 99(6), 72-79. Dan, Q., Bai, B., & Huang, Q. (2024). Gender differences in the relations between EFL students' classroom relationships and English language proficiency: The mediating role of selfregulated learning strategy use. *System*, *123*, 103311.

Dixson-Declève, S., Balland, P. A., & Bria, F. et al. (2022). *Industry 5.0: A* transformative vision for Europe: Governing systemic transformations towards a sustainable industry: ESIR Policy Brief No. 3. Brussels: European Commission.

Dumont, H., & Ready, D. D. (2023). On the promise of personalized learning for educational equity. *Npj Science of Learning*, 8(1).

https://doi.org/10.1038/s41539-023-00174-x.

Gunawardena, M., Bishop, P., & Aviruppola, K. (2024). Personalized learning: The simple, the complicated, the complex and the chaotic. *Teaching and Teacher Education*, *139*, 104429. Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis Campbell Systematic Reviews, 18, e1230. https://doi.org/10.1002/cl2.1230

Huang, A. Y., Lu, O. H., & Yang, S. J. (2023). Effects of artificial Intelligence– Enabled personalized recommendations on learners' learning engagement, motivation, and outcomes in a flipped classroom. *Computers & Education*, 194, 104684.

Ingkavara, T., Panjaburee, P., Srisawasdi, N., & Sajjapanroj, S. (2022). The use of a personalized learning approach to implementing self-regulated online learning. *Computers and Education: Artificial Intelligence*, *3*, 100086. Kamal, N. N. M., Mohd Adnan, A. H., Yusof, A. A., Ahmad, M. K., & Mohd

Kamal, M. A. (2019). Immersive interactive educational experiences– adopting Education 5.0, Industry 4.0 learning tech- nologies for Malaysian Universities. *Proceedings of the International Invention, Innovative & Creative (InIIC) Conference, Series,* Malacca, Malaysia (pp. 190–196). Lin, M. P. C., & Chang, D. (2023). CHAT-ACTS: A pedagogical framework for personalized chatbot to enhance active learning and self-regulated learning. *Computers and Education: Artificial Intelligence, 5,* 100167.

Lodge, J. M., Panadero, E., Broadbent, J. & Barba, P. G. (2019). Supporting selfregulated learning with learning analytics. In *Learning Analytics in the Classroom*. (pp. 45–55). Routledge.

https://doi.org/10.4324/9781351113038-4.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *PLoS Med* 6(7) e1000097.

https://doi.org/10.1371/journal.pmed.100 0097.

Mötteli, C., Grob, U., Pauli, C., Reusser, K., & Stebler, R. (2023). The influence of personalized learning on the development of learning enjoyment. *International Journal of Educational Research Open*, *5*, 100271.

Müller, J. (2020). Enabling technologies for Industry 5.0: Results of a workshop with Europe's technology leaders. Brussels: European Commission.

Ober, T. M., Lehman, B. A., Gooch, R., Oluwalana, O., Solyst, J., Phelps, G., &

Hamilton, L. S. (2023). Culturally

Responsive Personalized Learning:

Recommendations for a Working

Definition and Framework. ETS Research

Report Series, 2023(1), 1–14.

https://doi.org/10.1002/ets2.12372

Purnamasari, F., Nanda, H. I.,

Anugrahani, I. S., Muqorrobin, M. M., &

Juliardi, D. (2019). The late preparation of IR 4.0 and society 5.0: Portrays on the accounting students' concerns. *SouthEast Asia Journal of Contemporary Business, Economics and Law, 19*, 212–217. 2289-1560.

Rico-Juan, J. R., Cachero, C., & Macià, H. (2022). Influence of individual versus collaborative peer assessment on score accuracy and learning outcomes in higher education: an empirical study. *Assessment* & *Evaluation in Higher Education*, 47(4), 570-587.

Shaw, C., Larson, R., & Sibdari, S. (2014). An Asynchronous, Personalized Learning Platform—Guided Learning Pathways (GLP). *Creative Education*, 05(13), 1189–1204.

https://doi.org/10.4236/ce.2014.513135.

Shoaib, M., Sayed, N., Singh, J., Shafi, J., Khan, S., & Ali, F. (2024). AI student success predictor: Enhancing personalized learning in campus management systems. *Computers in Human Behavior*, *158*, 108301.

Sydle, S. (2022). Education 5.0: What

does It mean? How does it work?

Available at https://www.

sydle.com/blog/education-5-0-61e71a99edf3b9259714e25a/ (accessed 8 November 2022).

Sudibjo, N., Idawati, L., & Harsanti, H. G. R. (2019). Characteristics of learning in the era of Industry 4.0 and Society 5.0. *Advances in Social Science, Education and Humanities Research, 372*, 276–278. 2352-5398.

Tam, W. W., Tang, A., Woo, B., & Goh, S. Y. (2019). Perception of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement of authors publishing reviews in nursing journals: A cross-sectional online survey. *BMJ Open*, 9(4), e026271. doi:

10.1136/bmjopen-2018-026271.

Vieira, R., Monteiro, P., Azevedo, G., & Oliveira, J. (2023). Society 5.0 and Education 5.0: A Critical Reflection. In 2023 18th Iberian Conference on

Proceedings of UNNES-TEFLIN National Conference, Vol.6 (2024)

July 6, 2024

Information Systems and Technologies (CISTI) (pp. 1-6). IEEE. Xie, H., Chu, H. C., Hwang, G. J., & Wang, C. C. (2019). Trends and development in technology-enhanced adaptive/personalized learning: A systematic review of journal publications from 2007 to 2017. Computers & Education, 140, 103599. https://doi.org/10.1016/j.compedu.2019.1 03599.

Yang, A. C., Flanagan, B., & Ogata, H. (2022). Adaptive formative assessment system based on computerized adaptive testing and the learning memory cycle for personalized learning. *Computers and Education: Artificial Intelligence*, *3*, 100104.

Zhang, L., Basham, J. D., & Carter Jr, R.
A. (2022). Measuring personalized
learning through the Lens of UDL:
Development and content validation of a student self-report instrument. *Studies in Educational Evaluation*, 72, 101121.
Zheng, C., Wang, L., & Chai, C. S.
(2023). Self-assessment first or peer-assessment first: effects of video-based formative practice on learners' English public speaking anxiety and performance. *Computer Assisted Language Learning*, 36(4), 806-839.