MODIFIKASI MAGNETIT MENGGUNAKAN ASAM HUMAT GUNA MENINGKATKAN KEMAMPUAN ADSORPSI TERHADAP ZAT WARNA MALACHITE GREEN
DOI:
https://doi.org/10.15294/.v0i0.12Kata Kunci:
Asam humat, magnetit, malachite green, adsorpsiAbstrak
Senyawa Fe3O4 memiliki luas permukaan yang besar, kapasitas adsorpsi yang besar dan mudah untuk dipisahkan karena medan magnet luar dapat menariknya. Namun, dibalik kelebihan tersebut, Fe3O4 mudah teroksidasi dan mengalami penggumpalan dalam larutan air yang dapat mempengaruhi daya serapnya. Oleh karena itu, perlu dilakukan modifikasi guna meningkatkan kinerja Fe3O4. Dalam penelitian ini, dilakukan pelapisan Fe3O4 menggunakan asam humat (AH) sebagai adsorben Fe3O4-AH untuk meningkatkan kemampuan adsorpsi terhadap zat warna malachite green. Asam humat diperoleh dari hasil isolasi tanah gambut Rawa Pening, Ambarawa, Jawa Tengah. Sintesis Fe3O4 dan Fe3O4-AH dilakukan menggunakan metode kopresipitasi menggunakan NaOH. Karakterisasi material menggunakan Fourier Transform Infrared (FTIR) Spectroscopy, X-Ray Diffraction (XRD) dan Surface Area Analyzer (SAA) Hasil karakterisasi menunjukkan adanya pembentukan ikatan antara gugus karboksilat pada AH dengan Fe pada Fe3O4 dan pelapisan asam humat pada magnetit tidak mengubah bentuk fasanya serta pelapisan AH mampu meningkatkan luas permukaan dari Fe3O4. Adsorpsi zat warna malachite green oleh asam humat optimum pada pH 3 selama 60 menit dengan konsentrasi awal optimum 96,95 mg/L, Fe3O4 optimum pada pH 7 selama 90 menit dengan konsentrasi awal optimum 83,48 mg/L dan Fe3O4-AH optimum pada pH 3 selama 90 menit dengan konsentrasi awal optimum 104,15 mg/L.
Referensi
Alvarez-Puebla, R. A., & Garrido, J. J. (2005). Effect of pH on the aggregation of a gray humic acid in colloidal and solid states. Chemosphere.
Chen, R. P., Zhang, Y. L., Wang, X. Y., Zhu, C. Y., Ma, A. J., & Min, W. jiang. (2014). Removal of methylene blue from aqueous solution using humic-acid coated magnetic nanoparticles. Desalination and Water Treatment, 10, 37–41.
Faisal, A. A. H., Abdul-Kareem, M. B., Mohammed, A. K., Naushad, M., Ghfar, A. A., & Ahamad, T. (2020). Humic acid coated sand as a novel sorbent in permeable reactive barrier for environmental remediation of groundwater polluted with copper and cadmium ions. Journal of Water Process Engineering, 36(April), 101373.
Friák, M., Schindlmayr, A., & Scheffler, M. (2014). Ab initio study of the half-metal to metal transition in strained magnetite. May.
Gautam, R. K., & Tiwari, I. (2020). Humic acid functionalized magnetic nanomaterials for remediation of dye wastewater under ultrasonication: Application in real water samples, recycling and reuse of nanosorbents. Chemosphere, 245, 125553.
Ghasemi, M., Mashhadi, S., Asif, M., Tyagi, I., Agarwal, S., & Gupta, V. K. (2016). Microwave-assisted synthesis of tetraethylenepentamine functionalized activated carbon with high adsorption capacity for Malachite green dye. Journal of Molecular Liquids, 213, 317–325.
Hou, L. (2020). Mechanisms that control the adsorption – desorption behavior of phosphate on magnetite nanoparticles : the role of particle size and surface. 2378–2388.
Hu, J. D., Zevi, Y., Kou, X. M., Xiao, J., Wang, X. J., & Jin, Y. (2010). Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Science of the Total Environment, 408(16), 3477–3489.
Jiang, W., Cai, Q., Xu, W., Yang, M., Cai, Y., Dionysiou, D. D., & O’Shea, K. E. (2014). Cr(VI) adsorption and reduction by humic acid coated on magnetite. Environmental Science and Technology.
Keyhanian, F., & Shariati, S. (2016). Magnetite nanoparticles with surface modification for removal of methyl violet from aqueous solutions. Arabian Journal of Chemistry, 9, S348–S354.
Khan, M. Y., Mangrich, A. S., Schultz, J., Grasel, F. S., Mattoso, N., & Mosca, D. H. (2015). Green chemistry preparation of superparamagnetic nanoparticles containing Fe3O4 cores in biochar. Journal of Analytical and Applied Pyrolysis, 116, 42–48.
Madrakian, T., Afkhami, A., Ahmadi, M., Mondal, P., Anweshan, A., Purkait, M. K., Atacan, K., Çakıroğlu, B., Özacar, M., Güy, N., Çakar, S., Özacar, M., Bagtash, M., Yamini, Y., Tahmasebi, E., Zolgharnein, J., Dalirnasab, Z., de Rezende, F. M., Furlan, C. M., … He, Z. (2020). Adsorption optimization by response surfacMelamine-based dendrimer aminemodified magnetic nanoparticles as an efficient Pb(II) adsorbent for wastewater treatment:e methodology. Chemosphere, 152(1), 106–110.
Peng, L., Qin, P., Lei, M., Zeng, Q., Song, H., Yang, J., Shao, J., Liao, B., & Gu, J. (2012). Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. Journal of Hazardous Materials, 209–210, 193–198.
Rashid, M., Price, N. T., Gracia Pinilla, M. Á., & O’Shea, K. E. (2017). Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles. Water Research, 123, 353–360.
Raval, N. P., Shah, P. U., & Shah, N. K. (2016). Nanoparticles Loaded Biopolymer as Effective Adsorbent for Adsorptive Removal of Malachite Green from Aqueous Solution. Water Conservation Science and Engineering, 1, 69–81.
Shen, Y. F., Tang, J., Nie, Z. H., Wang, Y. D., Ren, Y., & Zuo, L. (2009). Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Separation and Purification Technology, 68(3), 312–319.
Singhal, P., Jha, S. K., Pandey, S. P., & Neogy, S. (2017). Rapid extraction of uranium from sea water using Fe3O4 and humic acid coated Fe3O4 nanoparticles. Journal of Hazardous Materials, 335, 152–161.